Homework 2
 Math 202 Stochastic Processes Spring 2024

Question 1. Let N cards carry the distinct numbers x_{1}, \ldots, x_{N}. If two cards are drawn at random without replacement, show that the correlation coefficient ρ between the numbers appearing on the two cards in $-1 /(N-1)$.
$\{$ If this questions looks too abstract, you can assume the numbers are $1,2, \cdots, N$ and start doing the computation for $N=5$, then try to generalize.\}

Solution:

Let X, Y be the number on the first and second cards respectively.

$$
\begin{align*}
P\left(X=x_{n}\right) & =\frac{1}{N} \\
P\left(Y=x_{n}\right) & =P\left(X=x_{n}, Y=x_{n}\right)+P\left(X \neq x_{n}, Y=x_{n}\right)=P\left(X \neq x_{n}, Y=x_{n}\right) \tag{1}\\
& =P\left(Y=x_{n} \mid X \neq x_{n}\right) \times P\left(X \neq x_{n}\right)=\frac{1}{N-1} \times \frac{N-1}{N}=\frac{1}{N}
\end{align*}
$$

Then we get $E[X]=E[Y]$ and $E\left[X^{2}\right]=E\left[Y^{2}\right]$. Let

$$
\begin{equation*}
T=\sum_{n=1}^{N} x_{n} \quad \text { and } \quad S=\sum_{n=1}^{N} x_{n}^{2} \tag{2}
\end{equation*}
$$

Then

$$
\begin{gather*}
E[X]=E[Y]=\sum_{n=1}^{N} x_{n} P\left(X=x_{n}\right)=\frac{T}{N} \\
E\left[X^{2}\right]=E\left[Y^{2}\right]=\sum_{n=1}^{N} x_{n}^{2} P\left(X=x_{n}\right)=\frac{S}{N} \tag{3}
\end{gather*}
$$

We know ρ is the correlation coefficient of X, Y, the formula of ρ is

$$
\begin{equation*}
\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}} \tag{4}
\end{equation*}
$$

Also we know

$$
\begin{equation*}
\sigma_{X}=\sqrt{E\left[X^{2}\right]-(E[X])^{2}}=\sqrt{\frac{S}{N}-\frac{T^{2}}{N^{2}}}=\sigma_{Y} \tag{5}
\end{equation*}
$$

There is only $E[X Y]$ left to compute.

$$
\begin{align*}
E[X Y] & =\sum_{n=1}^{N} x_{n} \sum_{m \neq n} x_{m} P\left(X=x_{n}, Y=x_{m}\right) \\
& =\sum_{n=1}^{N} x_{n}\left(T-x_{n}\right) \frac{1}{N-1} \frac{1}{N} \tag{6}\\
& =\frac{T^{2}}{N(N-1)}-\frac{S}{N(N-1)}
\end{align*}
$$

Bring those formulas back to ρ, we have

$$
\begin{equation*}
\rho=-\frac{1}{N-1} \tag{7}
\end{equation*}
$$

Question 2. Let U, V, W be independent random variables with equal variances σ^{2}. Let $X=U+V$ and let $Y=V-W$. Find the covariance of X and Y.

Solution:

As U, V, W are independent,

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[X Y]-E[X] E[Y] \\
& =E[(U+V)(V-W)]-E[U+V] E[V-W] \\
& =E\left[U V+V^{2}-U W-V W\right]-\left(E[U] E[V]+(E[V])^{2}-E[U] E[W]-E[V] E[W]\right) \\
& =E\left[V^{2}\right]-(E[V])^{2} \\
& =\operatorname{Var}(V) \\
& =\sigma^{2}
\end{aligned}
$$

Question 3. Find all functions $x(t)$, $y(t)$ so that $x^{\prime}(t)=5 x-y, y^{\prime}(t)=3 x+y$ Find the particular solution with initial position $(x(0), y(0))=(1,3)$.

Solution:

The matrix is

$$
A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]
$$

This matrix has eigenvalues 4,2 with corresponding eigenvectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

So, we have the eigenvalue decomposition $A=Q D Q^{-1}$ where

$$
Q=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right] \quad Q^{-1}=\frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right] .
$$

Hence we have

$$
\begin{aligned}
e^{A t}=e^{Q D Q^{-1} t}=Q e^{D t} Q^{-1} & =\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
e^{4 t} & 0 \\
0 & e^{2 t}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
3 e^{4 t}-e^{2 t} & -e^{4 t}+e^{2 t} \\
3 e^{4 t}-3 e^{2 t} & -e^{4 t}+3 e^{2 t}
\end{array}\right]
\end{aligned}
$$

Finally using the initial condition, we obtain the solution

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=e^{A t}\left[\begin{array}{l}
x(0) \\
y(0)
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
3 e^{4 t}-e^{2 t} & -e^{4 t}+e^{2 t} \\
3 e^{4 t}-3 e^{2 t} & -e^{4 t}+3 e^{2 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
e^{2 t} \\
3 e^{2 t}
\end{array}\right]
$$

Hence the solution to the equation is

$$
x(t)=e^{2 t}, \quad y(t)=3 e^{2 t}
$$

Question 4. Find all functions f from integers to complex numbers so that

$$
f(n+1)=4 f(n)-5 f(n-1)
$$

Now find the solution when $f(0)=f(1)=2$ and explain why it is real.

Solution:

Plugging in $f=c^{n}$, we obtain the equation

$$
c^{2}-4 c+5=0
$$

This quadratic equation has the complex roots:

$$
c_{1}=2+i, \quad c_{2}=2-i .
$$

So, we obtain the general solution to the equation is

$$
f(n)=a(2+i)^{n}+b(2-i)^{n}
$$

Now using the initial condition we see the coefficients satisfy

$$
a=1+i \quad \text { and } \quad b=1-i
$$

Hence, we get

$$
f(n)=(1+i)(2+i)^{n}+(1-i)(2-i)^{n} .
$$

These numbers are real because one can easily check $f(n)=\overline{f(n)}$ for any $n \in \mathbb{N}$.

Question 5. Find the function $f(n)$ so that $f(0)=0$

$$
f(n)=\frac{1}{3}[f(n-1)+f(n+1)+f(n+2)], \quad n \geq 1
$$

and

$$
\lim _{n \rightarrow \infty} f(n)=1
$$

Solution:

Plugging in $f=c^{n}$, we obtain the equation

$$
c^{3}+c^{2}-3 c+1=0
$$

After factoring $c^{3}+c^{2}-3 c+1=(c-1)\left(c^{2}+2 c-1\right)$, so we get the roots $c=1,-1 \pm \sqrt{2}$. Hence the general solution looks like

$$
f(n)=A+B(-1+\sqrt{2})^{n}+C(-1-\sqrt{2})^{n}
$$

Having $f(0)=0$ implies $A+B+C=0$. Since $|-1-\sqrt{2}|>1$, the limit $\lim _{n \rightarrow \infty}(-1-\sqrt{2})^{n}$ doesn't exist. Moreover, since $|-1+\sqrt{2}|<1$, the $\operatorname{limit}^{\lim _{n \rightarrow \infty}(-1+\sqrt{2})^{n}=0 \text {. So, we must set } C=0, A=1}$ and hence $B=-A=-1$, and the solution is

$$
f(n)=1-(-1+\sqrt{2})^{n}
$$

