Homework 1 Math 202 Stochastic Processes Spring 2024

Question 1. (a) Plot the distribution function:

$$
F(x)= \begin{cases}0 & x \leq 0 \\ x^{3} & 0<x<1 \\ 1 & x \geq 1\end{cases}
$$

(b) Determine the corresponding density function $f(x)$ in the three regions.
(c) What is the mean of the distribution?
(d) If X is a random variable with distribution F, then evaluate $P(1 / 4 \leq X \leq 3 / 4)$.

Solution:

The density function is

$$
\begin{gathered}
f(x)= \begin{cases}3 x^{2} & 0<x<1 \\
0 & \text { otherwise }\end{cases} \\
E(X)=\int_{0}^{1} x f(x) d x=\frac{3}{4} \\
P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)=F\left(\frac{3}{4}\right)-F\left(\frac{1}{4}\right)=\frac{13}{32}
\end{gathered}
$$

Question 2. Determine the distribution function, mean and variance corresponding to the triangular density:

$$
f(x)= \begin{cases}x & 0 \leq x \leq 1 \\ 2-x & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Solution:

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{1}{2} x^{2} & 0 \leq x \leq 1 \\ -\frac{1}{2} x^{2}+2 x-1 & 1<x \leq 2 \\ 1 & x>2\end{cases}
$$

$$
E[X]=1
$$

$$
\operatorname{Var}(X)=\frac{1}{6}
$$

Question 3. Let 1_{A} be the indicator random variable associated with an event A, defined to be one if A occurs, and zero otherwise. Show
(a) $1_{A^{c}}=1-1_{A}$
(b) $1_{A \cap B}=1_{A} 1_{B}=\min \left(1_{A}, 1_{B}\right)$
(c) $1_{A \cup B}=\max \left(1_{A}, 1_{B}\right)$.

Solution:

If $\omega \in A^{c}$, then

$$
1_{A^{c}}(\omega)=1=1-1_{A}(\omega)
$$

If $\omega \in A$, then

$$
1_{A}(\omega)=1=1-1_{A^{c}}(\omega)
$$

So $1-A^{c}=1-1_{A}$.
If $\omega \in A \cap B$, then

$$
1_{A \cap B}(\omega)=1=1_{A} 1_{B}(\omega)
$$

If $\omega \notin A \cap B$, then ω is either in $X-(A \cup B), A-B$ or $B-A$, we have

$$
1_{A \cap B}(\omega)=0=1_{A} 1_{B}(\omega)
$$

So

$$
1_{-} A \cap B=1_{A} 1_{B}
$$

Note that $\min \left(1_{-} A, 1_{B}\right)$ has only two possible values 1,0 .

$$
\min \left(1_{A}, 1_{B}\right)(\omega)=1 \Longleftrightarrow 1_{A}(\omega)=1=1_{B}(\omega) \Longleftrightarrow \omega \in A \cap B
$$

So

$$
1_{A \cap B}=1_{A} 1_{B}=\min \left(1_{A}, 1_{B}\right)
$$

Note that $\max \left(1_{-} A, 1_{B}\right)$ has only two possible values 1,0 .

$$
\omega \in A \cup B \Longleftrightarrow 1_{A}(\omega)=1 \text { or } 1_{B}(\omega)=1 \Longleftrightarrow \max \left(1_{A}, 1_{B}\right)(\omega)=1
$$

Question 4. Let X and Y be independent random variables having distribution F_{X} and F_{Y} respectively.
(a) Let $Z=\max (X, Y)$. Express $F_{Z}(t)$ in terms of $F_{X}(s)$ and $F_{Y}(u)$.
(b) Let $W=\min (X, Y)$. Express $F_{W}(t)$ in terms of $F_{X}(s)$ and $F_{Y}(u)$.

Solution:

(a) Using the assumption that X, Y are independent,

$$
\begin{align*}
F_{Z}(t) & =P(Z \leq t) \\
& =P(\max (X, Y) \leq t) \\
& =P(X \leq t, Y \leq t) \tag{1}\\
& =P(X \leq t) P(Y \leq t) \\
& =F_{X}(t) F_{Y}(t)
\end{align*}
$$

since $\max (X, Y) \leq t$ if and only if both $X \leq t$ and $Y \leq t$.
(b) Similarly

$$
\begin{align*}
F_{W}(t) & =P(W \leq t) \\
& =1-P(W>t) \\
& =1-P(\min (X, Y)>t) \\
& =1-P(X>t, Y>t) \tag{2}\\
& =1-P(X>t) P(Y>t) \\
& =1-(1-P(X \leq t))(1-P(Y \leq t)) \\
& =1-\left(1-F_{X}(t)\right)\left(1-F_{Y}(t)\right) \\
& =F_{X}(t)+F_{Y}(t)-F_{X}(t) F_{Y}(t)
\end{align*}
$$

Question 5. Let U have a Poisson distribution with parameter λ and let $V=1 /(1+U)$. Find the expected value of V.

Solution:

Recall that

$$
U \sim \operatorname{Poisson}(\lambda), \quad P(U=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Then we have

$$
\begin{aligned}
E[V] & =\sum_{k=0}^{\infty} \frac{1}{1+k} P(U=k)=\sum_{k=0}^{\infty} \frac{1}{1+k} \frac{\lambda^{k} e^{-\lambda}}{k!} \\
& =e^{-\lambda} \sum_{k=0}^{\infty} \frac{1}{1+k} \frac{\lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{(k+1)!} \\
& =\frac{e^{-\lambda}}{\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{(k+1)!}=\frac{e^{-\lambda}}{\lambda} \sum_{n=1}^{\infty} \frac{\lambda^{k}}{k!} \\
& =\frac{e^{-\lambda}}{\lambda}\left(e^{\lambda}-1\right)=\frac{1-e^{-\lambda}}{\lambda}
\end{aligned}
$$

