Homework 1 Math 202 Stochastic Processes Spring 2024

Question 1. (a) Plot the distribution function:

$$F(x) = \begin{cases} 0 & x \le 0\\ x^3 & 0 < x < 1\\ 1 & x \ge 1 \end{cases}$$

- (b) Determine the corresponding density function f(x) in the three regions.
- (c) What is the mean of the distribution?
- (d) If X is a random variable with distribution F, then evaluate $P(1/4 \le X \le 3/4)$.

Solution:

Question 2. Determine the distribution function, mean and variance corresponding to the triangular density:

$$f(x) = \begin{cases} x & 0 \le x \le 1, \\ 2 - x & 1 \le x \le 2, \\ 0 & otherwise \end{cases}$$

Solution:

$$F(x) = \begin{cases} 0 & x < 0\\ \frac{1}{2}x^2 & 0 \le x \le 1\\ -\frac{1}{2}x^2 + 2x - 1 & 1 < x \le 2\\ 1 & x > 2 \end{cases}$$
$$E[X] = 1$$

$$\operatorname{Var}(X) = \frac{1}{6}$$

Question 3. Let 1_A be the indicator random variable associated with an event A, defined to be one if A occurs, and zero otherwise. Show

(a)
$$1_{A^c} = 1 - 1_A$$

- (b) $1_{A \cap B} = 1_A 1_B = \min(1_A, 1_B)$
- (c) $1_{A\cup B} = \max(1_A, 1_B).$

Solution:

If $\omega \in A^c$, then

$$1_{A^{c}}(\omega) = 1 = 1 - 1_{A}(\omega)$$

If $\omega \in A$, then

$$1_A(\omega) = 1 = 1 - 1_{A^c}(\omega)$$

So $1_A^c = 1 - 1_A$. If $\omega \in A \cap B$, then

$$1_{A \cap B}(\omega) = 1 = 1_A 1_B(\omega)$$

If $\omega \notin A \cap B$, then ω is either in $X - (A \cup B), A - B$ or $B - A$, we have

$$1_{A\cap B}(\omega) = 0 = 1_A 1_B(\omega)$$

So

 $1_{-}A \cap B = 1_A 1_B$

Note that $\min(1_A, 1_B)$ has only two possible values 1, 0.

$$\min(1_A, 1_B)(\omega) = 1 \Longleftrightarrow 1_A(\omega) = 1 = 1_B(\omega) \Longleftrightarrow \omega \in A \cap B$$

 So

 $1_{A\cap B} = 1_A 1_B = \min(1_A, 1_B)$

Note that $\max(1_A, 1_B)$ has only two possible values 1, 0.

 $\omega \in A \cup B \iff 1_A(\omega) = 1 \text{ or } 1_B(\omega) = 1 \iff \max(1_A, 1_B)(\omega) = 1$

Question 4. Let X and Y be independent random variables having distribution F_X and F_Y respectively.

- (a) Let $Z = \max(X, Y)$. Express $F_Z(t)$ in terms of $F_X(s)$ and $F_Y(u)$.
- (b) Let $W = \min(X, Y)$. Express $F_W(t)$ in terms of $F_X(s)$ and $F_Y(u)$.

Solution:

(a) Using the assumption that X, Y are independent,

$$F_Z(t) = P(Z \le t)$$

= $P(\max(X, Y) \le t)$
= $P(X \le t, Y \le t)$
= $P(X \le t)P(Y \le t)$
= $F_X(t)F_Y(t)$

since $\max(X, Y) \leq t$ if and only if both $X \leq t$ and $Y \leq t$. (b) Similarly

$$F_{W}(t) = P(W \le t)$$

= 1 - P(W > t)
= 1 - P(min(X, Y) > t)
= 1 - P(X > t, Y > t)
= 1 - P(X > t)P(Y > t)
= 1 - (1 - P(X \le t))(1 - P(Y \le t))
= 1 - (1 - F_{X}(t))(1 - F_{Y}(t))
= F_{X}(t) + F_{Y}(t) - F_{X}(t)F_{Y}(t)
(2)

(1)

Question 5. Let U have a Poisson distribution with parameter λ and let V = 1/(1 + U). Find the expected value of V.

Solution:

Recall that

$$U \sim \text{Poisson}(\lambda), \qquad P(U=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Then we have

$$E[V] = \sum_{k=0}^{\infty} \frac{1}{1+k} P(U=k) = \sum_{k=0}^{\infty} \frac{1}{1+k} \frac{\lambda^k e^{-\lambda}}{k!}$$
$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{1}{1+k} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k+1)!}$$
$$= \frac{e^{-\lambda}}{\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{(k+1)!} = \frac{e^{-\lambda}}{\lambda} \sum_{n=1}^{\infty} \frac{\lambda^k}{k!}$$
$$= \frac{e^{-\lambda}}{\lambda} (e^{\lambda} - 1) = \frac{1 - e^{-\lambda}}{\lambda}$$