Homework 12 Math 202 Stochastic Processes Spring 2024

Question 1. Let X_1, X_2, \cdots be *i.i.d* random variables with mean μ . Let T be a stopping time with respect to X_1, X_2, \cdots with $E[T] < \infty$.

(a) Let

$$Y = \sum_{n=1}^{\infty} |X_n| \mathbb{1}[T \ge n].$$

Show that $E[Y] < \infty$.

(b) Let $T_n = \min\{n, T\}$ and

$$M_n = X_1 + \dots + X_{T_n} - \mu T_n.$$

Explain why M_n is a uniformly integrable martingale.

(c) Prove Wald's equation

$$\operatorname{E}\left[\sum_{n=1}^{T} X_{n}\right] = \mu \operatorname{E}\left[T\right].$$

Question 2. Let S_n be simple random walk in \mathbb{Z} .

(a) Show that for every $\beta > 0$ there is $C_{\beta} < \infty$ such that for all positive integers n and all a > 0,

$$P\left(\max\{S_1,\cdots,S_n\}\geq a\sqrt{n}\right)\leq C_{\beta}e^{-a\beta}$$

(b) Show that for every c > 0,

$$\sum_{n=1}^{\infty} \mathcal{P}\left(S_n \ge c\sqrt{n}\log n\right) < \infty.$$

(c) (Uses Borel Cantelli Lemma) Use this to show that with probability one,

$$\lim_{n \to \infty} \frac{S_n}{\sqrt{n}(\log n)} = 0$$

Question 3. Let X_t denote a standard Brownian motion. Find the following probabilities. Give your answers as rational numbers or decimals to at least three places.

- (a) $X_2 > 2$
- (b) $X_2 > X_1$
- (c) $X_2 > X_1 > X_3$
- (d) $X_t = 0$ for some t with $2 \le t \le 3$
- (e) $X_t < 4$ for all t with 0 < t < 3

Question 4. Suppose X_t is a standard Brownian motion and $Y_t := a^{-1/2}X_{at}$ with a > 0. Show that Y_t is a standard Brownian motion.

4

Question 5. Suppose X_t is a standard Brownian motion and $Y_t := tX_{1/t}$. Show that Y_t is a standard Brownian motion. Hint: Use moment generating functions to show they have same distribution

5

Question 6. Let X_t be a standard Brownian motion. Compute the following conditional probability:

$$P(X_2 > 0 | X_1 > 0). (1)$$

)

Are the events $\{X_1 > 0\}$ and $\{X_2 > 0\}$ independent?