Homework 11 Math 202 Stochastic Processes Spring 2024

Question 1. Consider a biased random walk on the integers with probability p < 1/2 of moving to the right and probability 1 - p of moving to the left. Let S_n be the value at time n and assume that $S_0 = a$, where 0 < a < N.

- (a) Show that $M_n = \left(\frac{1-p}{p}\right)^{S_n}$ is a martingale.
- (b) Let T be the first time that the random walk reaches 0 or N, that is

 $T = \min\{n \ge 0 : S_n = 0 \text{ or } N\}.$

Use optional sampling on the martingale M_n to compute $P(S_T = 0)$.

Question 2. Let S_n be as in previous exercise.

- (a) Show that $M_n = S_n + (1 2p)n$ is a martingale.
- (b) Let T be the first time that the random walk reaches 0 or N that is

$$T = \min\{n : S_n = 0 \text{ or } N\}$$

Let $T_n = \min\{n, T\}$ and let Z_n be the martingale $Z_n = M_{T_n}$. Show that there exists a $C < \infty$ such that $\operatorname{E}[Z_n^2] < C$ for all n. You may use Exercise 1.7 in the book without proving it.

(c) Apply optimal sampling theorem to $E[M_T]$ and use this and the result from previous exercise to find the expected number of steps until absorption, E[T].

Question 3. Let S_n be as in the previous problems and let \mathcal{F}_n denote the information in S_0, \dots, S_n . Let

$$M_n = \frac{1}{(4p(1-p))^{n/2}} \left(\frac{1-p}{p}\right)^{S_n/2}$$

- (a) Show that M_n is a martingale with respect to \mathcal{F}_n .
- (b) Show that M_nS_n is a martingale with respect to \mathcal{F}_n .

Question 4. Let X_1, X_2, \cdots be i.i.d random variables taking values in $\{-1, 0, 1, \cdots\}$ with mean $\mu < 0$. Let $S_0 = 1$ and for n > 0, $S_n = 1 + X_1 + \cdots + X_n$. Let $T = \min\{n : S_n = 0\}$. By the law of large numbers we know $P(T < \infty) = 1$. Show that $E[T] \leq 1/|\mu|$.

Hint: It suffices to prove for each n, if $T_n = \min\{n, T\}$, then $\mathbb{E}[T_n] \leq 1/|\mu|$ Consider the martingale $M_n = S_n - n\mu$. Wald's equation (see next homework) can be used to prove $\mathbb{E}[T] = 1/|\mu|$.

Question 5. Let M_n be a martingale with respect to \mathcal{F}_n . Assume there exists a nonnegative random variable Y with $\mathbb{E}[Y] < \infty$ and $|M_n| < Y$ for all n. Show that M_n is uniformly integrable.