Homework 11 Math 202 Stochastic Processes Spring 2024

Question 1. Consider a biased random walk on the integers with probability $p<1 / 2$ of moving to the right and probability $1-p$ of moving to the left. Let S_{n} be the value at time n and assume that $S_{0}=a$, where $0<a<N$.
(a) Show that $M_{n}=\left(\frac{1-p}{p}\right)^{S_{n}}$ is a martingale.
(b) Let T be the first time that the random walk reaches 0 or N, that is

$$
T=\min \left\{n \geq 0: S_{n}=0 \text { or } N\right\}
$$

Use optional sampling on the martingale M_{n} to compute $\mathrm{P}\left(S_{T}=0\right)$.

Question 2. Let S_{n} be as in previous exercise.
(a) Show that $M_{n}=S_{n}+(1-2 p) n$ is a martingale.
(b) Let T be the first time that the random walk reaches 0 or N that is

$$
T=\min \left\{n: S_{n}=0 \text { or } N\right\} .
$$

Let $T_{n}=\min \{n, T\}$ and let Z_{n} be the martingale $Z_{n}=M_{T_{n}}$. Show that there exists a $C<\infty$ such that $\mathrm{E}\left[Z_{n}^{2}\right]<C$ for all n. You may use Exercise 1.7 in the book without proving it.
(c) Apply optimal sampling theorem to $\mathrm{E}\left[M_{T}\right]$ and use this and the result from previous exercise to find the expected number of steps until absorption, $\mathrm{E}[T]$.

Question 3. Let S_{n} be as in the previous problems and let \mathcal{F}_{n} denote the information in S_{0}, \cdots, S_{n}. Let

$$
M_{n}=\frac{1}{(4 p(1-p))^{n / 2}}\left(\frac{1-p}{p}\right)^{S_{n} / 2}
$$

(a) Show that M_{n} is a martingale with respect to \mathcal{F}_{n}.
(b) Show that $M_{n} S_{n}$ is a martingale with respect to \mathcal{F}_{n}.

Question 4. Let X_{1}, X_{2}, \cdots be i.i.d random variables taking values in $\{-1,0,1, \cdots\}$ with mean $\mu<0$. Let $S_{0}=1$ and for $n>0, S_{n}=1+X_{1}+\cdots+X_{n}$. Let $T=\min \left\{n: S_{n}=0\right\}$. By the law of large numbers we know $\mathrm{P}(T<\infty)=1$. Show that $\mathrm{E}[T] \leq 1 /|\mu|$.

Hint: It suffices to prove for each n, if $T_{n}=\min \{n, T\}$, then $\mathrm{E}\left[T_{n}\right] \leq 1 /|\mu|$ Consider the martingale $M_{n}=S_{n}-n \mu$. Wald's equation (see next homework) can be used to prove $\mathrm{E}[T]=1 /|\mu|$.

Question 5. Let M_{n} be a martingale with respect to \mathcal{F}_{n}. Assume there exists a nonnegative random variable Y with $\mathrm{E}[Y]<\infty$ and $\left|M_{n}\right|<Y$ for all n. Show that M_{n} is uniformly integrable.

