Homework 10 Math 202 Stochastic Processes Spring 2024

Question 1. Let X and Y be independent Poisson random variables with respective parameters λ and μ. Let $S=X+Y$. Find the conditional expectation of Y given $S=n$ and then find $E[Y \mid S]$.

Solution:

Since X is Poisson with parameter λ, and Y is Poisson with parameter μ, then $X+Y$ is parameter $\mu+\lambda$. So, we can compute the conditional probability as follows:

$$
\begin{align*}
P(Y=y \mid X+Y=n) & =\frac{P(Y=y, X+Y=n)}{P(X+Y=n)}=\frac{P(Y=y, X=n-y)}{P(X+Y=n)} \tag{1}\\
& =\frac{P(Y=y) P(X=n-y)}{P(X+Y=n)} \tag{2}\\
& =\frac{e^{-\mu} \mu^{y} / y!e^{-\lambda} \lambda^{n-y} /(n-y)!}{e^{-(\lambda+\mu)(\lambda+\mu)^{n} / n!}} \tag{3}\\
& =\frac{n!}{y!(n-y)!} \frac{\mu^{y} \lambda^{n-y}}{(\lambda+\mu)^{n}} \tag{4}\\
& =\binom{n}{y}\left(\frac{\mu}{\lambda+\mu}\right)^{y}\left(\frac{\lambda}{\lambda+\mu}\right)^{n-y} \tag{5}
\end{align*}
$$

for $y=0, \ldots, n$. So the conditional distribution is binomial with parameters n and $p=\mu /(\lambda+\mu)$. Then using the expectation formula for binomial distribution we see the conditional expectation

$$
E[Y \mid X+Y](n)=n p=\frac{n \mu}{\mu+\lambda}
$$

Hence,

$$
E[Y \mid S]=\frac{\mu S}{\mu+\lambda}
$$

Question 2. Assume that X and Y have joint density

$$
f(x, y)=\frac{2}{x y}, \text { for } 1<y<x<e
$$

Find $E[Y \mid X]$.

Solution:

Integrating in y we get the marginal distribution of X :

$$
f_{X}(x)=\int_{1}^{x} \frac{2}{x y} d y=\frac{2 \ln x}{x}, \text { for } 1<x<e
$$

The conditional density of Y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{1}{y \ln x}, \text { for } 1<y<x .
$$

Then we compute the conditional expectation as follows:

$$
E[Y \mid X](x)=\int_{1}^{x} y f_{Y \mid X}(y \mid x) d y=\int_{1}^{x} \frac{y}{y \ln x} d y=\frac{x-1}{\ln x}
$$

and hence

$$
E[Y \mid X]=\frac{X-1}{\ln X}
$$

Question 3. Ellen's insurance will pay for a medical expense subject to a $\$ 100$ deductible. Assume that the amount of the expense is exponentially distributed with mean $\$ 500$. Find the expectation and standard deviation of the payout. Hint: Let X be the insurance company's payout,then

$$
X= \begin{cases}M-100, & \text { if } M>100 \\ 0, & \text { if } M \leq 100\end{cases}
$$

where M is the amount of medical expense. Use tower property of conditional expectation.

Solution:

Since M has exponential distribution with parameter $1 / 500$, using the tower property we have

$$
\begin{aligned}
E[X]=E[E[X \mid M]] & =\frac{1}{500} \int_{0}^{\infty} E[X \mid M](m) e^{-m / 500} d m \\
& =\frac{1}{500} \int_{100}^{\infty} E[M-100 \mid M](m) e^{-m / 500} d m=\frac{1}{500} \int_{100}^{\infty}(m-100) e^{-m / 500} d m \\
& =500 e^{-1 / 5} \approx \$ 409.365
\end{aligned}
$$

and

$$
\begin{aligned}
E\left[X^{2}\right]=E\left[E\left[X^{2} \mid M\right]\right] & =\frac{1}{500} \int_{0}^{\infty} E\left[X^{2} \mid M\right](m) e^{-m / 500} d m \\
& =\frac{1}{500} \int_{100}^{\infty} E\left[(M-100)^{2} \mid M\right](m) e^{-m / 500} d m=\frac{1}{500} \int_{100}^{\infty}(m-100)^{2} e^{-m / 500} d m \\
& =500000 e^{-1 / 5} \approx 409365
\end{aligned}
$$

Hence the standard deviation is

$$
\sqrt{\operatorname{Var}(X)}=\sqrt{E\left[X^{2}\right]-\left(E[X]^{2}\right)} \approx \$ 491.72
$$

Question 4. Consider independent random variables X, Y, and U, where U is uniformly distributed on $(0,1)$ and $E\left[X^{2}\right]=\sigma_{X}^{2}$ and $E\left[Y^{2}\right]=\sigma_{Y}^{2}$. Find the conditional expectation

$$
E\left(U X^{2}+(1-U) Y^{2} \mid U\right)
$$

Solution:

By linearity of the conditional expectation,

$$
E\left[U X^{2}+(1-U) Y^{2} \mid U\right]=E\left[U X^{2} \mid U\right]+E\left[(1-U) Y^{2} \mid U\right]
$$

Since U and $(1-U)$ are functions of U, we have

$$
\left.E\left[U X^{2} \mid U\right]=U E\left[X^{2} \mid U\right] \text { and } E\left[(1-U) Y^{2}\right] \mid U\right]=(1-U) E\left[Y^{2} \mid U\right]
$$

And finally since X and Y are independent of U, we obtain

$$
U E\left[X^{2} \mid U\right]=U E\left[X^{2}\right]=U \sigma_{X}^{2} \text { and }(1-U) E\left[Y^{2} \mid U\right]=(1-U) \sigma_{Y}^{2} .
$$

Then putting all these together, we see

$$
E\left[U X^{2}+(1-U) Y^{2} \mid U\right]=U \sigma_{X}^{2}+(1-U) \sigma_{Y}^{2}
$$

Question 5. Let X_{1}, X_{2}, \cdots be i.i.d random variables. Let $m(t)=\mathrm{E}\left[e^{t X_{1}}\right]$ be the moment generating function of X_{1} (and hence of each X_{i}). Fix t and assume $m(t)<\infty$. Let $S_{0}=0$ and for $n>0$,

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

Let $M_{n}=m(t)^{-n} e^{t S_{n}}$. Show that M_{n} is a martingale with respect to $\left\{\mathcal{F}_{n}\right\}_{n}$ where $\mathcal{F}_{n}=\sigma\left(X_{i}: i \leq n\right)$, i.e. the information contained in X_{1}, \cdots, X_{n}.

Solution:

First, M_{n} is \mathcal{F}_{n}-measurable. Second, using the properties of conditional expectation and facts that S_{n} and so $e^{t S_{n}}$ is \mathcal{F}_{n}-measurable and X_{n+1} and so $e^{t X_{n+1}}$ is independent of \mathcal{F}_{n}, we have

$$
\begin{aligned}
\mathrm{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] & =\mathrm{E}\left[m(t)^{-(n+1)} e^{t S_{n}} e^{t X_{n+1}} \mid \mathcal{F}_{n}\right]=m(t)^{-(n+1)} e^{t S_{n}} \mathrm{E}\left[e^{t X_{n+1}} \mid \mathcal{F}_{n}\right] \\
& =m(t)^{-(n+1)} e^{t S_{n}} \mathrm{E}\left[e^{t X_{n+1}}\right]=m(t)^{-n} e^{t S_{n}}=M_{n}
\end{aligned}
$$

Note also that $\mathrm{E}\left[\left|M_{n}\right|\right]=m(t)^{-n} m(t)^{n}=1<\infty$. Hence, M_{n} is a martingale with respect to \mathcal{F}_{n}.

