Homework 10 Math 202 Stochastic Processes Spring 2024

Question 1. Let X and Y be independent Poisson random variables with respective parameters λ and μ . Let S = X + Y. Find the conditional expectation of Y given S = n and then find E[Y|S].

Solution:

Since X is Poisson with parameter λ , and Y is Poisson with parameter μ , then X + Y is parameter $\mu + \lambda$. So, we can compute the conditional probability as follows:

_

=

$$P(Y = y|X + Y = n) = \frac{P(Y = y, X + Y = n)}{P(X + Y = n)} = \frac{P(Y = y, X = n - y)}{P(X + Y = n)}$$
(1)

$$\frac{P(Y=y)P(X=n-y)}{P(X+Y=n)}$$
(2)

$$=\frac{e^{-\mu}\mu^{y}/y!e^{-\lambda}\lambda^{n-y}/(n-y)!}{e^{-(\lambda+\mu)(\lambda+\mu)^{n}}/n!}$$
(3)

$$=\frac{n!}{y!(n-y)!}\frac{\mu^y\lambda^{n-y}}{(\lambda+\mu)^n}\tag{4}$$

$$= \binom{n}{y} \left(\frac{\mu}{\lambda+\mu}\right)^{y} \left(\frac{\lambda}{\lambda+\mu}\right)^{n-y} \tag{5}$$

for y = 0, ..., n. So the conditional distribution is binomial with parameters n and $p = \mu/(\lambda + \mu)$. Then using the expectation formula for binomial distribution we see the conditional expectation

$$E[Y|X+Y](n) = np = \frac{n\mu}{\mu + \lambda}$$

Hence,

$$E[Y|S] = \frac{\mu S}{\mu + \lambda}$$

Question 2. Assume that X and Y have joint density

$$f(x,y) = \frac{2}{xy}, \text{ for } 1 < y < x < e.$$

Find E[Y|X].

Solution:

Integrating in y we get the marginal distribution of X:

$$f_X(x) = \int_1^x \frac{2}{xy} dy = \frac{2\ln x}{x}$$
, for $1 < x < e$

The conditional density of Y given X = x is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{y \ln x}$$
, for $1 < y < x$.

Then we compute the conditional expectation as follows:

$$E[Y|X](x) = \int_{1}^{x} y f_{Y|X}(y|x) dy = \int_{1}^{x} \frac{y}{y \ln x} dy = \frac{x-1}{\ln x}$$

and hence

$$E[Y|X] = \frac{X-1}{\ln X}.$$

Question 3. Ellen's insurance will pay for a medical expense subject to a \$100 deductible. Assume that the amount of the expense is exponentially distributed with mean \$500. Find the expectation and standard deviation of the payout. Hint: Let X be the insurance company's payout, then

$$X = \begin{cases} M - 100, & \text{if } M > 100\\ 0, & \text{if } M \le 100 \end{cases}$$

where M is the amount of medical expense. Use tower property of conditional expectation.

Solution:

Since M has exponential distribution with parameter 1/500, using the tower property we have

$$E[X] = E[E[X|M]] = \frac{1}{500} \int_0^\infty E[X|M](m)e^{-m/500} dm$$

= $\frac{1}{500} \int_{100}^\infty E[M - 100|M](m)e^{-m/500} dm = \frac{1}{500} \int_{100}^\infty (m - 100)e^{-m/500} dm$
= $500e^{-1/5} \approx \$409.365$

and

$$E[X^{2}] = E[E[X^{2}|M]] = \frac{1}{500} \int_{0}^{\infty} E[X^{2}|M](m)e^{-m/500}dm$$

= $\frac{1}{500} \int_{100}^{\infty} E[(M-100)^{2}|M](m)e^{-m/500}dm = \frac{1}{500} \int_{100}^{\infty} (m-100)^{2}e^{-m/500}dm$
= $500000e^{-1/5} \approx 409365.$

Hence the standard deviation is

$$\sqrt{Var(X)} = \sqrt{E[X^2] - (E[X]^2)} \approx \$491.72$$

Question 4. Consider independent random variables X, Y, and U, where U is uniformly distributed on (0,1) and $E[X^2] = \sigma_X^2$ and $E[Y^2] = \sigma_Y^2$. Find the conditional expectation

$$E\left(UX^2 + (1-U)Y^2\big|U\right)$$

Solution:

By linearity of the conditional expectation,

$$E[UX^{2} + (1 - U)Y^{2}|U] = E[UX^{2}|U] + E[(1 - U)Y^{2}|U].$$

Since U and (1 - U) are functions of U, we have

$$E[UX^2|U] = UE[X^2|U]$$
 and $E[(1-U)Y^2]|U] = (1-U)E[Y^2|U]$

And finally since X and Y are independent of U, we obtain

$$UE[X^2|U] = UE[X^2] = U\sigma_X^2$$
 and $(1-U)E[Y^2|U] = (1-U)\sigma_Y^2$.

Then putting all these together, we see

$$E[UX^{2} + (1 - U)Y^{2}|U] = U\sigma_{X}^{2} + (1 - U)\sigma_{Y}^{2}$$

Question 5. Let X_1, X_2, \cdots be *i.i.d* random variables. Let $m(t) = \mathbb{E}\left[e^{tX_1}\right]$ be the moment generating function of X_1 (and hence of each X_i). Fix t and assume $m(t) < \infty$. Let $S_0 = 0$ and for n > 0,

$$S_n = X_1 + \dots + X_n$$

Let $M_n = m(t)^{-n} e^{tS_n}$. Show that M_n is a martingale with respect to $\{\mathcal{F}_n\}_n$ where $\mathcal{F}_n = \sigma(X_i : i \leq n)$, *i.e.* the information contained in X_1, \dots, X_n .

Solution:

First, M_n is \mathcal{F}_n -measurable. Second, using the properties of conditional expectation and facts that S_n and so e^{tS_n} is \mathcal{F}_n -measurable and X_{n+1} and so $e^{tX_{n+1}}$ is independent of \mathcal{F}_n , we have

$$\mathbb{E}\left[M_{n+1}\big|\mathcal{F}_{n}\right] = \mathbb{E}\left[m(t)^{-(n+1)}e^{tS_{n}}e^{tX_{n+1}}\big|\mathcal{F}_{n}\right] = m(t)^{-(n+1)}e^{tS_{n}}\mathbb{E}\left[e^{tX_{n+1}}\big|\mathcal{F}_{n}\right]$$
$$= m(t)^{-(n+1)}e^{tS_{n}}\mathbb{E}\left[e^{tX_{n+1}}\right] = m(t)^{-n}e^{tS_{n}} = M_{n}$$

Note also that $E[|M_n|] = m(t)^{-n}m(t)^n = 1 < \infty$. Hence, M_n is a martingale with respect to \mathcal{F}_n .