Homework 10 Math 202 Stochastic Processes Spring 2024

Question 1. Let X and Y be independent Poisson random variables with respective parameters λ and μ. Let $S=X+Y$. Find the conditional expectation of Y given $S=n$ and then find $E[Y \mid S]$.

Question 2. Assume that X and Y have joint density

$$
f(x, y)=\frac{2}{x y}, \text { for } 1<y<x<e
$$

Find $E[Y \mid X]$.

Question 3. Ellen's insurance will pay for a medical expense subject to a $\$ 100$ deductible. Assume that the amount of the expense is exponentially distributed with mean \$500. Find the expectation and standard deviation of the payout. Hint: Let X be the insurance company's payout, then

$$
X= \begin{cases}M-100, & \text { if } M>100 \\ 0, & \text { if } M \leq 100\end{cases}
$$

where M is the amount of medical expense. Use tower property of conditional expectation.

Question 4. Consider independent random variables X, Y, and U, where U is uniformly distributed on $(0,1)$ and $E\left[X^{2}\right]=\sigma_{X}^{2}$ and $E\left[Y^{2}\right]=\sigma_{Y}^{2}$. Find the conditional expectation

$$
E\left(U X^{2}+(1-U) Y^{2} \mid U\right)
$$

Question 5. Let X_{1}, X_{2}, \cdots be i.i.d random variables. Let $m(t)=\mathrm{E}\left[e^{t X_{1}}\right]$ be the moment generating function of X_{1} (and hence of each X_{i}). Fix t and assume $m(t)<\infty$. Let $S_{0}=0$ and for $n>0$,

$$
S_{n}=X_{1}+\cdots+X_{n} .
$$

Let $M_{n}=m(t)^{-n} e^{t S_{n}}$. Show that M_{n} is a martingale with respect to $\left\{\mathcal{F}_{n}\right\}_{n}$ where $\mathcal{F}_{n}=\sigma\left(X_{i}: i \leq n\right)$, i.e. the information contained in X_{1}, \cdots, X_{n}.

