Homework 1 Math 202 Stochastic Processes Spring 2024

Question 1. (a) Plot the distribution function:

$$F(x) = \begin{cases} 0 & x \le 0\\ x^3 & 0 < x < 1\\ 1 & x \ge 1 \end{cases}$$

- (b) Determine the corresponding density function f(x) in the three regions.
- (c) What is the mean of the distribution?
- (d) If X is a random variable with distribution F, then evaluate $P(1/4 \le X \le 3/4)$.

Question 2. Determine the distribution function, mean and variance corresponding to the triangular density:

$$f(x) = \begin{cases} x & 0 \le x \le 1, \\ 2 - x & 1 \le x \le 2, \\ 0 & otherwise \end{cases}$$

Question 3. Let 1_A be the indicator random variable associated with an event A, defined to be one if A occurs, and zero otherwise. Show

- (a) $1_{A^c} = 1 1_A$
- (b) $1_{A \cap B} = 1_A 1_B = \min(1_A, 1_B)$
- (c) $1_{A\cup B} = \max(1_A, 1_B).$

Question 4. Let X and Y be independent random variables having distribution F_X and F_Y respectively.

- (a) Let $Z = \max(X, Y)$. Express $F_Z(t)$ in terms of $F_X(s)$ and $F_Y(u)$.
- (b) Let $W = \min(X, Y)$. Express $F_W(t)$ in terms of $F_X(s)$ and $F_Y(u)$.

Question 5. Let U have a Poisson distribution with parameter λ and let V = 1/(1 + U). Find the expected value of V.