MATH 201: Intro to Probability

Midterm 2
March 28, 2024

Name: \qquad (Please print clearly)

UR ID: \qquad

Instructions:

- You have 75 minutes to work on this exam. You are responsible for checking that this exam has all 9 pages. Please do not remove any pages.
- Write your final answer in the box provided.
- No calculators, phones, electronic devices, books, or notes are allowed during the exam, except for the provided formula sheet.
- Show all work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Numerical or algebraic simplifications of answers are not required, except when specifically stated otherwise. However, summations should be evaluated, and expressions such at " \sum " and "..." should not appear in your final answers.
- Please write your UR ID in the space provided at the top of each page.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

FOR REFERENCE, NO QUESTIONS ON THIS PAGE

For a random variable X,

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
$$

If $X \sim \operatorname{Bin}(n, p)$, then

$$
\begin{gathered}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0, \ldots, n \\
E[X]=n p, \quad \operatorname{Var}(X)=n p(1-p)
\end{gathered}
$$

If $X \sim \operatorname{Geom}(p)$, then

$$
\begin{gathered}
P(X=k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots \\
E[X]=\frac{1}{p}, \quad \operatorname{Var}(X)=\frac{1-p}{p} .
\end{gathered}
$$

If $X \sim \operatorname{Poisson}(\lambda)$, then

$$
\begin{gathered}
P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}, \quad k=0,1,2, \ldots \\
E[X]=\lambda, \quad \operatorname{Var}(X)=\lambda
\end{gathered}
$$

1. (10 points)

Let X be a random variable with mean $E[X]=5$ and variance $\operatorname{Var}(X)=2$.
(a) Compute $E[2 x+1]$.

Solution.

$$
E[2 X+1]=2 E[X]+1=11
$$

(b) Compute $\operatorname{Var}(2 X+1)$.

Solution.

$$
\operatorname{Var}(2 X+1)=2^{2} \operatorname{Var}(X)=8
$$

(c) Compute $E\left[2 X^{2}+1\right]$.

Solution.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2} \Longrightarrow E\left[X^{2}\right]=\operatorname{Var}(X)+(E[X])^{2}=27, \\
E\left[2 X^{2}+1\right]=2 E\left[X^{2}\right]+1=2 \cdot 27+1=55 .
\end{gathered}
$$

2. (10 points)

Let $X \sim \mathcal{N}(-1.5,4)$.
(a) Find the probability $P(-2 \leq X<1)$. You may leave your answer in terms of Φ, where Φ is the cumulative distribution function of a standard normal random variable..

Solution.

Let $Z=\frac{X+1.5}{2}$. Then $Z \sim \mathcal{N}(0,1)$.

$$
\begin{aligned}
P(-2 \leq X<1) & =P(-0.5 \leq X+1.5<2.5) \\
& =P\left(-0.25 \leq \frac{X+1.5}{2}<1.25\right) \\
& =P(-0.25 \leq Z<1.25) \\
& \approx \Phi(1.25)-(1-\Phi(0.25)) \\
& \approx 0.8944-(1-0.5987) \\
& =0.4931
\end{aligned}
$$

(b) Find number a and b such that $P(a \leq X<b)=\Phi(3)-\Phi(1)$.

Solution.

$$
\begin{aligned}
\Phi(3)-\Phi(1) & =P(1 \leq Z<3) \\
& =P\left(1 \leq \frac{X+1.5}{2}<3\right) \\
& =P(2 \leq X+1.5<6) \\
& =P(0.5 \leq X<4.5) .
\end{aligned}
$$

So, $a=0.5, b=4.5$.

3. (10 points)

Suppose that X is a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{4}{x^{5}}, & x \geq 1 \\ 0, & x<1\end{cases}
$$

(a) Compute the expectation $E[X]$ of X.

Solution.

$$
\begin{aligned}
E[X] & =\int_{1}^{\infty} x \frac{4}{x^{5}} d x \\
& =4 \int_{1}^{\infty} x^{-4} d x \\
& =4\left[\frac{1}{-3 x^{3}}\right]_{1}^{\infty} \\
& =4 / 3 .
\end{aligned}
$$

(b) Compute the variance $\operatorname{Var}(X)$ of X.

Solution.

First compute $E\left[X^{2}\right]$:

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{1}^{\infty} x^{2} \frac{4}{x^{5}} d x \\
& =4 \int_{1}^{\infty} \frac{1}{x^{3}} d x \\
& =4\left[\frac{1}{-2 x^{-2}}\right]_{1}^{\infty} \\
& =2 .
\end{aligned}
$$

Therefore

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=2-(4 / 3)^{2}=2 / 9
$$

4. (10 points)

Suppose that you have a biased coin; the probability that you flip a tails is $3 / 5$. Flip this coin 1000 times.
(a) Use the normal distribution to approximate the probability that you flip at least 580 tails. Write your answer in terms of Φ, where Φ is the cumulative distribution function of the standard normal random variable. You do not need to evaluate Φ.

Solution.

Let S be the number of times you flip a tails. Then $S \sim \operatorname{Bin}(1,000,3 / 5)$ and so

$$
E[S]=600, \quad \operatorname{Var}(S)=1000(3 / 5)(2 / 5)=240
$$

So

$$
\begin{aligned}
P(S \geq 580) & =1-P(S<580) \\
& =1-P\left(\frac{S-600}{\sqrt{240}}<\frac{580-600}{\sqrt{240}}\right) \\
& \approx 1-P\left(Z<\frac{-20}{\sqrt{240}}\right) \\
& =1-\Phi\left(\frac{-20}{\sqrt{240}}\right) \\
& =\Phi\left(\frac{20}{\sqrt{240}}\right) .
\end{aligned}
$$

(b) Use the normal distribution to approximate the probability that you flip exactly 600 tails. Write your answer in terms of Φ, where Φ is the cumulative distribution function of the standard normal random variable. You do not need to evaluate Φ.

Solution.

Let S be the number of times you flip a tails. Then $S \sim \operatorname{Bin}(1,000,3 / 5)$ and so

$$
E[S]=600, \quad \operatorname{Var}(S)=1000(3 / 5)(2 / 5)=240
$$

We want to estimate $P(S=600)$. Using the continuity correction for normal approximation, we get

$$
\begin{aligned}
P(S=600) & =P(599.5 \leq S \leq 600.5) \\
& =P\left(\frac{599.5-600}{\sqrt{240}} \leq \frac{S-600}{\sqrt{240}} \leq \frac{600.5-600}{\sqrt{240}}\right) \\
& \approx P\left(\frac{-0.5}{\sqrt{240}} \leq Z \leq \frac{0.5}{\sqrt{240}}\right) \\
& =\Phi\left(\frac{0.5}{\sqrt{240}}\right)-\Phi\left(\frac{-0.5}{\sqrt{240}}\right) \\
& =\Phi\left(\frac{0.5}{\sqrt{240}}\right)-\left(1-\Phi\left(\frac{0.5}{\sqrt{240}}\right)\right) \\
& =2 \Phi\left(\frac{0.5}{\sqrt{240}}\right)-1 .
\end{aligned}
$$

5. (10 points)

We are using a poll to determine the percentage of university students that drink coffee. Out of 1000 people, 750 respond that they do drink coffee. Find the 95% confidence interval for the true probability that a randomly chosen student drinks coffee. You may leave your answer in terms of Φ or Φ^{-1}.

Solution:
Our estimated parameter is $\hat{p}=\frac{750}{1000}=.75$. Using the normal approximation, we know that for any $\epsilon>0$,

$$
P(|p-\hat{p}|<\epsilon) \geq 2 \Phi(2 \epsilon \sqrt{n})-1 .
$$

Thus we want

$$
\begin{aligned}
& .95 \leq 2 \Phi(2 \epsilon \sqrt{n})-=2 \Phi(20 \sqrt{10} \epsilon)-1 \\
& \Longleftrightarrow .975 \leq \Phi(20 \sqrt{10} \epsilon) \\
& \Longleftrightarrow \frac{\Phi^{-1}(.975)}{20 \sqrt{10}} \leq \epsilon .
\end{aligned}
$$

Thus, the 95% confidence interval is

$$
\left(.75-\frac{\Phi^{-1}(.975)}{20 \sqrt{10}}, .75+\frac{\Phi^{-1}(.975)}{20 \sqrt{10}}\right) .
$$

6. (10 points)

A manufacturer produces light-bulbs that are packed into boxes of 100. Quality control studies indicate that 0.5% of the light-bulbs produced are defective.
(a) Estimate the probability that a randomly chosen box contains no defective light-bulbs. Solution.

We use the Poisson approximation. Define X to be the number of defective bulbs in the box. Let $n=100$ and $p=0.005$. Then $X \sim \operatorname{Poisson}(\lambda)$ where

$$
\lambda=n p=100 \times 0.005=0.5 .
$$

We know the probability mass function of X is given by

$$
P(X=k)=\frac{e^{-0.5}(0.5)^{k}}{k!} .
$$

Thus

$$
P(X=0)=\frac{e^{-0.5}(0.5)^{0}}{0!}=e^{-0.5}
$$

(b) Estimate the probability that a randomly chosen box contains 2 or more defective lightbulbs. (Answer must be explicit, not written in summation notation.)

Solution.

Using the Poisson approximation as in part (a):

$$
P(2 \text { or more defectives })=1-P(X=0)-P(X=1)
$$

Since

$$
\begin{gathered}
P(X=1)=\frac{e^{-0.5}(0.5)^{1}}{1!}=\frac{e^{-0.5}}{2}, \\
P(2 \text { or more defectives })=1-e^{-0.5}-\frac{e^{-0.5}}{2}=1-\frac{3 e^{-0.5}}{2} .
\end{gathered}
$$

