MATH 201: Written Homework 9
 Due Friday, 6/21 by 1pm EDT

(P1) Let $X \sim \operatorname{Binomial}(n, p)$.
(a) Compute the moment generating function of X.
(b) Compute $E\left[X^{3}\right]$.
(P2) Let Z_{1}, \ldots, Z_{n} be independent normal random variables with mean 0 and variance 1 and define

$$
Y=Z_{1}^{2}+\cdots+Z_{n}^{2}
$$

(a) Find the moment generating function of Z_{1}^{2}. Hint: use the definition $M_{Z_{1}^{2}}(t)=E\left[e^{t Z_{1}^{2}}\right]$ and be careful integrating, as $M_{Z_{1}^{2}}(t)$ is only finite for $t<1 / 2$.
(b) Compute the mean and variance of Y.
(c) Find the moment generating function $M_{Y}(t)$ of Y.
(d) Compute $E\left[Y^{3}\right]$.
(P3) For a positive integer n and $\lambda>0$, a variable $Y \sim \operatorname{Gamma}(n, \lambda)$ is Gamma distributed if it has density (see pg. 168 of our text)

$$
f_{Y}(t)=\left\{\begin{array}{c}
\frac{\lambda^{n} t^{n-1}}{(n-1)!} e^{-\lambda t}, \quad t \geq 0 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Let X_{1}, \ldots, X_{n} be independent exponentially distributed random variables, each with the same parameter λ. In this problem you will show that $X_{1}+\ldots+X_{n} \sim \operatorname{Gamma}(n, \lambda)$.
(a) Recall at the end of our 8.3 notes, we discussed that $X_{1}+X_{2} \sim \operatorname{Gamma}(2, \lambda)$ using convolution. Use convolution to show that $X_{1}+X_{2}+X_{3} \sim \operatorname{Gamma}(3, \lambda)$.
(b) More generally, use convolution to show that if k is a positive integer, $X \sim \operatorname{Exp}(\lambda)$, and $Y \sim$ $\operatorname{Gamma}(k, \lambda)$, then $X+Y \sim \operatorname{Gamma}(k+1, \lambda)$. Hint: you will need to compute the integral $\int_{0}^{t} x^{k-1} e^{-\lambda x} e^{-\lambda(t-x)} d x$.
(c) Observe that $\operatorname{Gamma}(1, \lambda)$ is precisely $\operatorname{Exp}(\lambda)$ simply by definition. Briefly explain how this and part (b) allow us to conclude that $X_{1}+\ldots+X_{n} \sim \operatorname{Gamma}(n, \lambda)$ (i.e. what proof technique is used?).

