Math 171: Honors Calculus II

Midterm I

February 21st, 2024

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Your University email \qquad

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: \qquad

- The use of calculators, cell phones, iPods, and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the spaces provided.
- You are responsible for checking that this exam has all 7 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Suppose that $f(x)$ is integrable and $f(x) \geq 0$ on $[a, b]$. Prove that $f^{2}(x)$ (i.e., the function $\left.(f(x))^{2}\right)$ is integrable on $[a, b]$.

First, f integrable $\Longrightarrow f$ bounded $\Longrightarrow \exists M>0$ such that $|f| \leq M$ on $[a, b]$.

Second, note that $M_{i}\left(f^{2}\right) \leq\left(M_{i}(f)\right)^{2}$ since $M_{i}(f)^{2}$ is an upper bound for f^{2}, and, similarly, $m_{i}\left(f^{2}\right) \geq\left(M_{i}(f)\right)^{2}$ since $m_{i}(f)^{2}$ is a lower bound for f^{2}.

Let $\epsilon>0$.

Because f integrable, \exists partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\frac{\epsilon}{2 M}$.
Then we compute

$$
\begin{gathered}
U\left(f^{2}, P\right)-L\left(f^{2}, P\right)=\sum_{i=1}^{n}\left(M_{i}\left(f^{2}\right)-m_{i}\left(f^{2}\right)\right)\left(t_{i}-t_{i-1}\right) \\
\leq \sum_{i=1}^{n}\left(M_{i}(f)^{2}-m_{i}(f)^{2}\right)\left(t_{i}-t_{i-1}\right) \\
=\sum_{i=1}^{n}\left(M_{i}(f)+m_{i}(f)\right)\left(M_{i}(f)-m_{i}(f)\right)\left(t_{i}-t_{i-1}\right) \\
\leq 2 M \sum_{i=1}^{n}\left(\left(M_{i}(f)-m_{i}(f)\right)\left(t_{i}-t_{i-1}\right)\right. \\
\leq 2 M[U(f, P)-L(f, P)]<\epsilon
\end{gathered}
$$

Since $\epsilon>0$ was arbitrary and we showed \exists partition P of $[a, b]$ such that $U\left(f^{2}, P\right)-$ $L\left(f^{2}, P\right)<\epsilon$, we conclude f^{2} is integrable on $[a, b]$.
2. (10 points) Suppose that $f(x)$ is bounded on $[0,1]$ and integrable on $[\delta, 1]$ for all $0<\delta<1$. Prove that $f(x)$ is integrable on $[0,1]$.
f bounded $\Longrightarrow \exists M>0$ such that $|f| \leq M$ on $[0,1]$.

Let $\epsilon>0$. Let $\delta=\frac{\epsilon}{4 M}$.
Because f integrable on $[\delta, 1], \exists$ partition P^{\prime} of $[\delta, 1]$ such that $U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<\frac{\epsilon}{2}$.
Let $P=\{0\} \cup P$. Then P is a partition of $[0,1]$.
And

$$
U(f, P)-L(f, P)<\delta \cdot 2 M+\frac{\epsilon}{2}=\epsilon
$$

3. (10 points) Find a number $c>0$ such that the area under the curve

$$
f(x)=\frac{1}{48+x^{3}}
$$

and above the x-axis from $x=c$ to $x=2 c$ is maximized.

The area in question is

$$
F(c)=\int_{c}^{2 c} \frac{1}{48+x^{3}} d x
$$

f is continuous, so by FTC2 $F(c)$ is differentiable, and

$$
\frac{d}{d c} \int_{c}^{2 c} \frac{1}{48+x^{3}}=\frac{2}{48+(2 c)^{3}}-\frac{1}{48+c^{3}}
$$

This is never undefined for $c>0$ and is zero when

$$
\frac{2}{48+(2 c)^{3}}=\frac{1}{48+c^{3}}
$$

or

$$
2\left(48+c^{3}\right)=48+8 c^{3}
$$

which occurs when

$$
48=6 c^{3}
$$

or

$$
c=2 .
$$

For $c<2$, we have $48>6 c^{3}$, and therefore $2\left(48+c^{3}\right)>48+8 c^{3}$, etc, so $F^{\prime}(c)>0$. Similarly, $c>0 \Longrightarrow F^{\prime}(c)<0$, so $c=2$ is a maximum by the first derivative test.
4. (10 points) Determine whether the following improper integrals converge or diverge. You must justify your answer.
(a) $I=\int_{8}^{\infty} \sqrt{\frac{1}{x^{5 / 3}-1}} d x$

First note

$$
\sqrt{\frac{1}{x^{5 / 3}-1}} \geq \sqrt{\frac{1}{x^{5 / 3}}}=\frac{1}{x^{5 / 6}}
$$

But $5 / 6<1$ means $\int_{8}^{\infty} \frac{d x}{x^{5 / 6}}$ diverges, so, by the Comparison Test, I diverges as well.
(b) $I=\int_{1}^{\infty} \frac{\arctan (x)}{x^{2}+x} d x$

First note $\arctan (x) \leq \frac{\pi}{2}$ for all $x \in \mathbb{R}$, so

$$
\frac{\arctan (x)}{x^{2}+x} \leq \frac{\pi}{2} \cdot \frac{1}{x^{2}+x} \leq \frac{\pi}{2} \cdot \frac{1}{x^{2}}
$$

But

$$
\int_{1}^{\infty} \frac{\pi}{2} \cdot \frac{1}{x^{2}}=\frac{\pi}{2} \int_{1}^{\infty} \frac{1}{x^{2}}
$$

But $2>1$ means $\int_{1}^{\infty} \frac{d x}{x^{2}}$ converges, so $\int_{1}^{\infty} \frac{\pi}{2} \cdot \frac{1}{x^{2}}$ converges, so by the Comparison Test, I converges as well.
5. (10 points) Show that

$$
\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{1+x^{2}} d x \leq \frac{\pi}{\sqrt{2}}
$$

[Hint: What is the maximal value of the numerator?]

Let $f(x)=\sin x+\cos x$. Then $f^{\prime}(x)=\cos (x)-\sin (x)$, which is never undefined and only equals zero when $\cos (x)=\sin (x)=\sqrt{1-\cos ^{2}(x)}$ or $\cos (x)=\frac{1}{\sqrt{2}}$ (which must therefore also be the value of $\sin (x)$, since they are equal, so $f(x)=\frac{2}{\sqrt{2}}$ at this point - which we "know" is $\frac{\pi}{4}$, but we don't know is $\frac{\pi}{4}$). The value of f at the endpoints of $\left[0, \frac{\pi}{2}\right]$ is 1 , so $f(x) \leq \frac{2}{\sqrt{2}}$ on $\left[0, \frac{\pi}{2}\right]$. Thus, since $\arctan (x) \leq \frac{\pi}{2}$ for all $x \in \mathbb{R}$

$$
\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{1+x^{2}} d x \leq \frac{2}{\sqrt{2}} \int_{0}^{\pi / 2} \frac{1}{1+x^{2}} d x \leq \frac{2}{\sqrt{2}}[\arctan (\pi / 2)-\arctan (0)] \leq \frac{2}{\sqrt{2}} \cdot \frac{\pi}{2}
$$

which gives the desired bound. You could also use

$$
\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{1+x^{2}} d x \leq \frac{2}{\sqrt{2}} \int_{0}^{\pi / 2} \frac{1}{1+x^{2}} d x \leq \frac{2}{\sqrt{2}} \int_{0}^{\pi / 2} 1 d x \leq \frac{2}{\sqrt{2}} \cdot \frac{\pi}{2}
$$

6. (10 points) Calculate:
(a) $\frac{d}{d x} \int_{\log (2)}^{2^{x}}\left(1+t^{2}\right) d t$

By FTC1, since $\left(1+t^{2}\right)$ is continuous, we get

$$
\left(1+\left(2^{x}\right)^{2}\right) 2^{x} \log (2)
$$

(b) For $x>1, \frac{d}{d x}\left(\log (x)^{\sin (x)}\right)$

By definition,

$$
\log (x)^{\sin (x)}=e^{\sin (x) \log \log (x)}
$$

so

$$
\begin{aligned}
\frac{d}{d x}\left(\log (x)^{\sin (x)}\right)= & \frac{d}{d x} e^{\sin (x) \log \log (x)}=e^{\sin (x) \log \log (x)}\left[\cos (x) \log \log x+\sin (x) \frac{1}{x \log x}\right]= \\
& \log (x)^{\sin (x)} \cdot\left[\cos (x) \log \log x+\sin (x) \frac{1}{x \log x}\right]
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{1}{t^{3}}$

$$
\lim _{x \rightarrow \infty} \int_{1}^{x} \frac{1}{t^{3}}=\left.\lim _{x \rightarrow \infty} \frac{-1}{2} t^{-2}\right|_{1} ^{\infty}=\lim _{x \rightarrow \infty}\left(\frac{-x^{-2}}{2}+\frac{1}{2}\right)=\frac{1}{2}
$$

