Math 171: Honors Calculus II

Midterm I February 21st, 2024

NAME (please print legibly):	
Your University ID Number: _	
Your University email	

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam and that all work will be my own.

Signature: ____

- The use of calculators, cell phones, iPods, and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Put your answers in the spaces provided.
- You are responsible for checking that this exam has all 7 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Suppose that f(x) is integrable and $f(x) \ge 0$ on [a, b]. Prove that $f^2(x)$ (i.e., the function $(f(x))^2$) is integrable on [a, b].

First, f integrable \implies f bounded $\implies \exists M > 0$ such that $|f| \leq M$ on [a, b].

Second, note that $M_i(f^2) \leq (M_i(f))^2$ since $M_i(f)^2$ is an upper bound for f^2 , and, similarly, $m_i(f^2) \geq (M_i(f))^2$ since $m_i(f)^2$ is a lower bound for f^2 .

Let $\epsilon > 0$.

Because f integrable, \exists partition P of [a, b] such that $U(f, P) - L(f, P) < \frac{\epsilon}{2M}$.

Then we compute

$$U(f^{2}, P) - L(f^{2}, P) = \sum_{i=1}^{n} (M_{i}(f^{2}) - m_{i}(f^{2}))(t_{i} - t_{i-1})$$

$$\leq \sum_{i=1}^{n} (M_{i}(f)^{2} - m_{i}(f)^{2})(t_{i} - t_{i-1})$$

$$= \sum_{i=1}^{n} (M_{i}(f) + m_{i}(f))(M_{i}(f) - m_{i}(f))(t_{i} - t_{i-1})$$

$$\leq 2M \sum_{i=1}^{n} ((M_{i}(f) - m_{i}(f))(t_{i} - t_{i-1}))$$

$$\leq 2M [U(f, P) - L(f, P)] < \epsilon$$

Since $\epsilon > 0$ was arbitrary and we showed \exists partition P of [a, b] such that $U(f^2, P) - L(f^2, P) < \epsilon$, we conclude f^2 is integrable on [a, b].

2. (10 points) Suppose that f(x) is bounded on [0,1] and integrable on $[\delta,1]$ for all $0 < \delta < 1$. Prove that f(x) is integrable on [0,1].

f bounded $\implies \exists M > 0$ such that $|f| \leq M$ on [0, 1].

Let $\epsilon > 0$. Let $\delta = \frac{\epsilon}{4M}$.

Because f integrable on $[\delta, 1]$, \exists partition P' of $[\delta, 1]$ such that $U(f, P') - L(f, P') < \frac{\epsilon}{2}$. Let $P = \{0\} \cup P$. Then P is a partition of [0, 1].

And

$$U(f, P) - L(f, P) < \delta \cdot 2M + \frac{\epsilon}{2} = \epsilon$$

3. (10 points) Find a number c > 0 such that the area under the curve

$$f(x) = \frac{1}{48 + x^3}$$

and above the x-axis from x = c to x = 2c is maximized.

The area in question is

$$F(c) = \int_{c}^{2c} \frac{1}{48 + x^3} \, dx.$$

f is continuous, so by FTC2 F(c) is differentiable, and

$$\frac{d}{dc} \int_{c}^{2c} \frac{1}{48+x^3} = \frac{2}{48+(2c)^3} - \frac{1}{48+c^3}$$

This is never undefined for c > 0 and is zero when

$$\frac{2}{48 + (2c)^3} = \frac{1}{48 + c^3}$$

or

$$2(48+c^3) = 48+8c^3$$

which occurs when

 $48 = 6c^3$

or

c = 2.

For c < 2, we have $48 > 6c^3$, and therefore $2(48 + c^3) > 48 + 8c^3$, etc, so F'(c) > 0. Similarly, $c > 0 \implies F'(c) < 0$, so c = 2 is a maximum by the first derivative test.

4. (10 points) Determine whether the following improper integrals converge or diverge. You must justify your answer.

(a)
$$I = \int_8^\infty \sqrt{\frac{1}{x^{5/3} - 1}} dx$$

First note

$$\sqrt{\frac{1}{x^{5/3} - 1}} \ge \sqrt{\frac{1}{x^{5/3}}} = \frac{1}{x^{5/6}}$$

But 5/6 < 1 means $\int_8^\infty \frac{dx}{x^{5/6}}$ diverges, so, by the Comparison Test, I diverges as well.

(b)
$$I = \int_1^\infty \frac{\arctan(x)}{x^2 + x} dx$$

First note $\arctan(x) \leq \frac{\pi}{2}$ for all $x \in \mathbb{R}$, so

$$\frac{\arctan(x)}{x^2 + x} \le \frac{\pi}{2} \cdot \frac{1}{x^2 + x} \le \frac{\pi}{2} \cdot \frac{1}{x^2}$$

But

$$\int_{1}^{\infty} \frac{\pi}{2} \cdot \frac{1}{x^2} = \frac{\pi}{2} \int_{1}^{\infty} \frac{1}{x^2}$$

But 2 > 1 means $\int_1^\infty \frac{dx}{x^2}$ converges, so $\int_1^\infty \frac{\pi}{2} \cdot \frac{1}{x^2}$ converges, so by the Comparison Test, I converges as well.

5. (10 points) Show that

$$\int_0^{\pi/2} \frac{\sin x + \cos x}{1 + x^2} dx \le \frac{\pi}{\sqrt{2}}.$$

[Hint: What is the maximal value of the numerator?]

Let $f(x) = \sin x + \cos x$. Then $f'(x) = \cos(x) - \sin(x)$, which is never undefined and only equals zero when $\cos(x) = \sin(x) = \sqrt{1 - \cos^2(x)}$ or $\cos(x) = \frac{1}{\sqrt{2}}$ (which must therefore also be the value of $\sin(x)$, since they are equal, so $f(x) = \frac{2}{\sqrt{2}}$ at this point – which we "know" is $\frac{\pi}{4}$, but we don't *know* is $\frac{\pi}{4}$). The value of f at the endpoints of $[0, \frac{\pi}{2}]$ is 1, so $f(x) \leq \frac{2}{\sqrt{2}}$ on $[0, \frac{\pi}{2}]$. Thus, since $\arctan(x) \leq \frac{\pi}{2}$ for all $x \in \mathbb{R}$

$$\int_0^{\pi/2} \frac{\sin x + \cos x}{1 + x^2} dx \le \frac{2}{\sqrt{2}} \int_0^{\pi/2} \frac{1}{1 + x^2} dx \le \frac{2}{\sqrt{2}} [\arctan(\pi/2) - \arctan(0)] \le \frac{2}{\sqrt{2}} \cdot \frac{\pi}{2}$$

which gives the desired bound. You could also use

$$\int_0^{\pi/2} \frac{\sin x + \cos x}{1 + x^2} dx \le \frac{2}{\sqrt{2}} \int_0^{\pi/2} \frac{1}{1 + x^2} dx \le \frac{2}{\sqrt{2}} \int_0^{\pi/2} 1 \, dx \le \frac{2}{\sqrt{2}} \cdot \frac{\pi}{2}$$

6. (10 points) Calculate:

(a)
$$\frac{d}{dx} \int_{\log(2)}^{2^x} (1+t^2) dt$$

By FTC1, since $(1 + t^2)$ is continuous, we get

$$(1+(2^x)^2)2^x\log(2)$$

(b) For
$$x > 1$$
, $\frac{d}{dx} \left(\log(x)^{\sin(x)} \right)$

By definition,

$$\log(x)^{\sin(x)} = e^{\sin(x)\log\log(x)}$$

 \mathbf{SO}

$$\frac{d}{dx} \left(\log(x)^{\sin(x)} \right) = \frac{d}{dx} e^{\sin(x)\log\log(x)} = e^{\sin(x)\log\log(x)} \left[\cos(x)\log\log x + \sin(x)\frac{1}{x\log x} \right] = \log(x)^{\sin(x)} \cdot \left[\cos(x)\log\log x + \sin(x)\frac{1}{x\log x} \right]$$

(c) $\lim_{x \to \infty} \int_1^x \frac{1}{t^3}$

$$\lim_{x \to \infty} \int_{1}^{x} \frac{1}{t^{3}} = \lim_{x \to \infty} \left. \frac{-1}{2} t^{-2} \right|_{1}^{\infty} = \lim_{x \to \infty} \left(\frac{-x^{-2}}{2} + \frac{1}{2} \right) = \frac{1}{2}$$