Math 165

Final Dec 17, 2023

Name:	-				
Student ID:					
PLEASE COPY THE HO	ONOR PLEDGI	E AND SIGN:			
(Cursive is not required).					
I affirm that I will not give	e or receive any	unauthorized	help on this ex	am, and all wo	rk will
be my own.			note on one on	mi, wild will wo	111 44 111
y					
\(\frac{1}{2}\)			-	1	
			<u> </u>	<u> </u>	
	I 41				
YOUR SIGNATURE:					

	Part A	
QUESTION	VALUE	SCORE
1	16	
2	20	
3	14	
4	15	
5	20	
6	15	
TOTAL	100	

]	Part B	
QUESTION	VALUE	SCORE
1	17	
2	16	
3	17	
4	15	
5	18	
6	17	
TOTAL	100	

Part A

1. (16 pts) Determine whether each given set S is a subspace of the given vector space V. If so, give a proof; if not, state a property it fails to satisfy.

(a)(4 points)
$$V = \mathbb{R}^3$$
, and $S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid 3x = 2y + 5z \right\}$.

$$= \text{Nullspace} \left(\begin{bmatrix} x \\ 3 \\ -2 \end{bmatrix} - 5 \right)$$

Circle final answer. S is a subspace: YES or NO?

(b)(4 points)
$$V = \mathbb{R}^2$$
, and $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x+y=xy \right\}$.

When $K=g: 2y=y^2 \longrightarrow y=0, y=2$

So $(2,2) \in S$

but $(2,2) + (2,2) = (4,4) \notin S$

Not closed under $+$

Circle final answer. S is a subspace: YES of NO?

(c)(4 points)
$$V = M_3(\mathbb{R})$$
, and $S = \left\{A \in M_3(\mathbb{R}) \mid \det A = 0\right\}$.

See Solutions in (iii)

 $V = M_3(\mathbb{R})$, and $S = \left\{A \in M_3(\mathbb{R}) \mid \det A = 0\right\}$.

$$V = \int_{\mathbb{R}^3} \left\{ \int_{\mathbb{R}^3} \left$$

Circle final answer. S is a subspace: YES or NO?

(d)(4 points)
$$V = P_3(\mathbb{R})$$
, and $S = \left\{ f \in P_3(\mathbb{R}) \mid f(2)_1^2 - f(x^2) = f(x^3) \right\}$.

due to this square it is nonlinear
$$f(x) = a + bx + cx^2 + dx^3$$

(mich needs
$$\left\{ (a + 2b + 4c + 8d)^2 - (a + bx^2 + cx^4 + dx^6) = a + bx^3 + cx^6 + dx^9 \right\}$$

which needs
$$\left\{ (a + 1b + 4c + 8d)^2 - a = a \right\}$$

$$b = 0 \quad \left(\ln 0 \times^2 \ln \log h \right)$$

$$c = 0 \quad \left(\ln 0 \times 4 \ln \log h \right)$$

where $a = a$ is $b = c = d = 0$ in $c = d = 0$ in

2. (20 pts)

[10 points] (a) Find the solution to the differential equation

$$(y+x^2y)\frac{dy}{dx} = 4$$

which satisfies the initial condition y(0) = 2.

$$y(1+x^{2})\frac{dy}{dx} = Y$$

$$y' dy = \frac{Ydx}{1+x^{2}}$$

$$\int y dy = \int \frac{Ydx}{1+x^{2}} + C$$

$$y^{2} = 4\arctan(x) + C$$

$$y^{2} = 8\arctan(x) + D \qquad (D=2C)$$

$$y = \pm \sqrt{8\arctan(x) + D}$$

$$y = \pm \sqrt{8\arctan(x) + D}$$

$$2 = \pm \sqrt{8\arctan(x) + D}$$

$$2 = \pm \sqrt{8\arctan(x) + D}$$

$$y' = \sqrt{9-2}$$

$$y' = \sqrt$$

Answer:
$$y(x) = \int \delta a \cot a_n(x) + 4^{-1}$$

[10 points] (b) Find the solution to the differential equation

$$x\frac{dy}{dx} + 2y - 4x^2 = 0$$

which satisfies the initial condition y(2) = 6.

$$dy + 2y = 4x^{2} = 4x^{2}$$

$$y' = Integration factor = e^{\int_{-\infty}^{2} dx} = e^{2lnx} = e^{lnx^{2}} = x^{2}$$

$$d(y') = 4x(x^{2}) = 4x^{3}$$

$$y' = \int 4x^{3} dx + C = x^{4} + C$$

$$y' = x^{4} + C$$

$$y' = x^{4} + C$$

$$y' = x^{2} + C$$

Answer:
$$y(x) = \chi^2 + \frac{g}{\chi^2}$$

3. (14 pts)

Use Gauss-Jordan row reduction to find the inverse of the matrix

$$A = \begin{bmatrix} 5 & 6 & 6 \\ 2 & 2 & 2 \\ 6 & 6 & 2 \end{bmatrix}$$

if it exists.

Answer:
$$A^{-1} = \begin{bmatrix} -1 & 3 & 0 \\ 1 & -\frac{13}{4} & \frac{1}{4} \\ 0 & \frac{3}{4} & -\frac{1}{4} \end{bmatrix}$$

4. (15 pts) Consider a system of linear equations $A\mathbf{x} = \mathbf{b}$ where A is an $m \times n$ matrix,
where m and n are positive integers. Let $r = rank(A)$ and $z = nullity(A)$. In each of the
following cases, what can be said about the number of solutions to the system? (Mark only
one of the choices in each part.) (+2=n
C+z=n
1. If $r = z$ and b is the zero vector, then the system $r = \overline{z} - \overline{z} = \overline{z} > 0$
☐ is inconsistent.
\square has a unique solution. So $\geq > 0$ \rightarrow free va nables exist
has infinitely many solutions.
☐ Further information is necessary to determine an answer. Cy Ax=0 always has x=0 Soln. → ∞ Solns
2. If $r=z$ and b is not the zero vector, then the system
\Box is inconsistent. Ax=b reduces to $Ux=d$
Is inconsistent. Ax=b reduces to $y_x=d$ A does not have a unique solution.
has infinitely many solutions. As free var exist can't be unique. Solve but might be [0.0 date]
Further information is necessary to determine an answer no solution or bo solution or both solutions or b
3. If $z = 0$, $n < m$ and $b \neq 0$ then the system
□ is inconsistent. The property of the property of the sound of th
has a unique solution. Frz=n -) (=n but whole whole
has infinitely many solutions.
Further information is necessary to determine an answer. Ax=b can have no solution of the collaboration of the c
4. If $z \neq 0$ and $b = 0$, then the system $z \neq 0$ Free valexist
□ is inconsistent. ☐ Can't be unique solu
has a unique solution. H5 /tx=0 always has solve x=0
has infinitely many solutions.
☐ Further information is necessary to determine an answer.
5. If $m > n$, $z = n$ and $\mathbf{b} \neq 0$, then the system
\Box has a unique solution. $\Box X = b \neq 0$ has no solutions
☐ has infinitely many solutions.
☐ Further information is necessary to determine an answer.

5. (20 pts)

[10 points] (a) Find the determinant of

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & c \\ 1 & 4 & c^2 \end{pmatrix}$$

as a function of c. For which value(s) of c is M not invertible?

Answer:
$$det(M) = (c-1)(c-2)$$

Value(s) of c when M is not invertible are: 1/2

[10 points] (b) Suppose A is a 4×4 matrix with det(A) = -2 and B is obtained from A by subtracting 2 times row 3 from row 2. Then:

(i) Answer:
$$det(2A) = 24det(A)$$

= -32

(ii) Answer:
$$\det(A^T) = \mathcal{U} + /A = -2$$

(iii) Answer:
$$\det(A^{-1}) = \det A$$

= $-\frac{1}{2}$

(iv) Answer:
$$\det(A^3) = \det(A)^3 = (-2)^3 = -8$$

(v) Answer:
$$det(B) = dut(A)$$

= -2

6. (15 pts)

The matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 4 & -1 & 1 & -1 \\ 8 & -2 & 3 & -1 \end{pmatrix}$$

is row-equivalent to the matrix

$$B = \begin{pmatrix} 4 & -1 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \text{Not fully reduced}$$

$$\frac{\text{reduce}}{A - n - |y|} \begin{pmatrix} 4 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow |y| = \begin{bmatrix} 1 & -\frac{1}{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

 $\frac{\text{reduce}}{A_{10}^{24}(-4)} = \begin{pmatrix} 4 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \qquad | U = \begin{bmatrix} 1 & -\frac{1}{4} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ then $A_{21}(-3)$

[3 points] (a) The rank of A is

Answer: Rank of A is:

3

[3 points] (b) The nullity of A is

Answer: Nullity of A is:

Erant+null+y=4

[3 points] (c) List a set of basis vectors for the column space of A.

Answer: Basis for column space of A is:

 $\begin{bmatrix} 9 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

[3 points] (d) List a set of basis vectors for the null space of A. \rightarrow

 $\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} X_1 \\ X_2 \\ X_4 \end{bmatrix} = Span \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = Span \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$

Answer: Basis for nullspace of A is:

400

[3 points] (e) Give an example of a nontrivial linear dependency amongst the columns of A.

Answer: Example of nontrivial linear dependency is:

Part B

1. (17 pts) For the differential equation

$$(D^2+3)^2(D+1)^2y = e^t,$$

[7 points] (a) Find the general solution y_c to its associated homogeneous differential equation

$$(D^2+3)^2(D+1)^2y=0.$$

Answer:
$$y_c = C_1e^{-t} + C_2te^{-t} + D_3 \cos(J_3t) + D_4 \sin(J_3t) + D_5 teos(J_3t) + D_6 \sin(J_3t)$$

[7 points](b) Find a particular solution y_p to the differential equation.

$$y_p = Ae^t$$
 note $Dy = 1 \cdot y$ so plug in
to $(D^2+3)^2(D+1)^2y = e^t$
get $(I^2+3)^2(I+1)^2y = e(Ae^t) = e^t$
 $64 \cdot Ae^t = e^t$
 $A = 1/64$

Answer:
$$y_p = \frac{1}{6 \sqrt{e^{\xi}}}$$

[3 points](c) Determine the general solution to the differential equation.

Answer:
$$y = Add$$
 (a) l (b)

2. (16 pts) Consider the 3×3 matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ -3 & 2 & -1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

[4 points] (a) Determine the eigenvalues of A.

1 Lower-D so diagonals entres

Answer: Eigenvalues are:

[8 points] (b) Determine the eigenspaces corresponding to each of the eigenvalues of A. In your answer make sure to label so that it can be determined which eigenspace belongs to which eigenvalue.

re: 1-eigenspace = Span $\begin{bmatrix} -1/2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ Answer: Eigenspaces are:

Circle final answer. A is defective or nondefective?

Explanation:

At most 3 LI eigenvectors for VEY matrix -Notenough!

3. (17 pts) Solve the initial value problem

$$y''-2y'+5y=0$$

with y(0) = -3, y'(0) = 1.

$$D^{2}-2D+5)y=0$$
 $P^{2}-2D+5)y=0$
 $P^{2}-2D+5$
 $P^{2}-2D+5$

$$y = C_1 e^{t} \cos(2t) + C_2 e^{t} \sin(2t)$$

$$y(0) = -3: \quad |-3| = C_7$$

$$y' = C_1 e^{t} \cos(2t)$$

$$- \theta C_1 e^{t} 2 \sin(2t)$$

$$+ C_2 e^{t} \sin(2t)$$

$$+ 2 C_2 e^{t} \cos(2t)$$

$$y'(0) = 1: \quad |= C_1 + 2 C_2$$

$$|= -3 + 2 C_2 \rightarrow C_2 = 2$$

Answer: y(x) =-3etcus(2+) + 2etsin/2+)

$$y'' + \frac{c}{m}y' + \frac{k}{m}y = 0.$$

$$\left(D^2 + \frac{c}{m}D + \frac{k}{m} \right) y = 0$$

where m, k, c > 0 and the independent variable is time t. Each part in the following scenarios is independent of each other part with different parameters. In each p art either select the most correct answer out of the selection given or enter a numerical answer if required.

- (a) Suppose that in suitable units, the values of c, k, m are c = 3, k = 1, m = 1. If the c2-4/cm = 9-4 = 5>0 two real resols spring is displaced from rest the following will occur:
 - The spring will return to rest over time without undergoing oscillations.
 - ☐ The spring will undergo decaying oscillations, whose amplitude decays exponentially over time.
 - ☐ The spring will undergo oscillations, whose amplitude remains constant over time.
- (b) Suppose that in suitable units, the values of c, k, m are c = 4, k = 3, m = 2. If the pring is displaced from rest the following will occur: C = (km = 16 - 4(6) = -8 < 0)The spring will return to rest over time without undergoing oscillations. (km = 16 - 4(6) = -8 < 0)spring is displaced from rest the following will occur:

 - The spring will undergo decaying oscillations, whose amplitude decays exponen-
 - ☐ The spring will undergo oscillations, whose amplitude remains constant over time.
- (c) Suppose that in suitable units, the values of c, k, m are c = 0, k = 2, m = 2. The

Natural Frequency of the system is equal to:

Natural Frequency = 1 (Cyculor of the frequency = 1)

(d) Suppose that in suitable units, the values of c, k, m are c = 0, k = 2, m = 2 and a motor drives the spring with force E = 10. drives the spring with force $F=10\cos(\omega t)$. For which value of ω will the response of the system be strongest in terms of magnitude of oscillations?

Value of ω for strongest response: same as (c)

5. (18 pts)

[9 points] (a) Suppose a system $\hat{x}' = \mathbb{A}\hat{x}$ where \mathbb{A} is a 2×2 matrix has general solution

$$\hat{x} = C_1 e^{3t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + C_2 e^{5t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Find A.

3,5 eigenvolves
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ eigenvectors}$$

$$A = S \triangle S^{-1} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix} \begin{bmatrix} 21 \\ 12 \end{bmatrix} = \begin{bmatrix} 21 \\ 12 \end{bmatrix} \begin{bmatrix} 30 \\ 30 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2-1 \\ -12 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 7 \\ -17 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 6 \\ 3 \\ 0 \end{bmatrix} \begin{bmatrix} 2-1 \\ -12 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 7 \\ 17 \end{bmatrix}$$

Answer:
$$A = \begin{bmatrix} \frac{7}{3} & \frac{4}{3} \\ \frac{17}{3} & \frac{17}{3} \end{bmatrix}$$

[9 points] (b) Let \mathbb{B} be a 2×2 real matrix which has eigenvalue 2 + 3i with corresponding eigenvector $\begin{bmatrix} 1 \\ 1+2i \end{bmatrix}$. Write down the general solution to $\hat{x}' = \mathbb{B}\hat{x}$ where the independent variable is time t. Please make sure that the two basis solutions used in the final form of your general solution are real valued quantities.

$$e^{(2+3i)t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + i \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

$$= \left(e^{2t} \omega s(3t) \begin{bmatrix} 1 \\ 0 \end{bmatrix} - e^{2t} s in(3t) \begin{bmatrix} 0 \\ 2 \end{bmatrix} + i \left(e^{2t} \omega s(3t) \begin{bmatrix} 0 \\ 2 \end{bmatrix} + e^{2t} s in(3t) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$$

$$= \left(e^{2t} \omega s(3t) - e^{2t} s in(3t) + i \left(e^{2t} s in(3t) - e^{2t} s in(3t) - e^{2t} s in(3t) \right) + i \left(e^{2t} s in(3t) - e^{2t} s in(3t) - e^{2t} s in(3t) - e^{2t} s in(3t) - e^{2t} s in(3t) + i \left(e^{2t} s in(3t) - e^{2t} s in(3$$

Answer:
$$\hat{x}(t) = C_1 \left[e^{2t} \cos(3t) + C_2 \left[e^{2t} \sin(3t) + C_2 \left[e^{2t} \cos(3t) + e^{2t} \sin(3t) \right] \right] + C_2 \left[e^{2t} \cos(3t) + e^{2t} \cos(3t) + e^{2t} \cos(3t) + e^{2t} \cos(3t) + e^{2t} \cos(3t) \right]$$

6. (17 pts) Consider the second order linear ODE:

$$y'' + 3y' + 2y = 0.$$

[5 points] (a) Rewrite this as a homogeneous linear system of first order ODEs: $\hat{x}' = A\hat{x}$.

Describe your choice of \hat{x} and \mathbb{A} explicitly.

Answer:
$$\hat{x} = \begin{bmatrix} \chi_{i} \\ \chi_{2} \end{bmatrix} = \begin{bmatrix} \chi_{i} \\ \chi_{i} \end{bmatrix}$$

Answer:
$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

[9 points] (b) Find the eigenvalues and corresponding eigenvectors of your matrix $\mathbb A$ from

- フ
1
1
-2

[3 points] (c) Write down the general solution to the system, i.e., the general solution for \hat{x} .

Answer: $\hat{x} = C_1 e^{-t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + C_2 e^{-2t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$