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Part A
1. (16 pts) Determine whether cach given set S is a subspace of the given vector space V.

If so, give a proof; if not, state a property it fails to satisfy.
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(¢)(4 points) V = Ma(R), and S — {A € My(R) [ det A = 0}.
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2. (20 pts)

[10 points] (a) Find the solution to the differential equation

dy

(y+wy)d =4

which satisfies the initial condition y(0) = 2.

3(%%)%:{
" ydy = e 7
jydy f%;§1+—C1

'\% qﬁfc‘/{'ﬁm()() + C/
TﬂL: 8@(0{‘“&(5‘) 0

Y= T K ae hanlx) +0

y((ﬂ‘fl‘- A== ﬁdrCHu(O) +O

: v = dem{ﬂﬂm +9

(p=29)

) u&a + .('(90‘1

ﬂwcfﬂx/\)

—p=t

Answer: y(z) =

JGacchial) +




(10 points] (b) Find the solution to the differential equation

dy
2y —da? =0
:cdm’s Yy T

which satisfies the initial condition y(2) = 6.
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3. (14 pts)

Use Gauss-Jordan row reduction to find the inverse of the matrix
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4. (15 pts) Consider a system of linear equations Ax = b where A is an m X n matrix,
where m andjn are positive integers/ Let r = rank(A) and z = nullity(A). In each of the

following cases, what can be said aboty the number of solutions to the system? (Mark only
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5. (20 pts)

110 points| (a) Find the determinant of

1 1 1
M=11 2 ¢
1 4 ¢2

as a function of ¢. For which value(s) of ¢ is M not invertible?
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Answer: det(M) (C - )( C“l}

Value(s) of ¢ when M is not invertible are: if 3

[10 points] (b) Suppose A is a 4 x 4 matrix with det(A) = —2 and B is obtained from A by

subtracting 2 times row 3 from row 2. Then:

Answer: det(24) = 2¥fHA)
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..., |Answer: det{A /afbf'ﬂ
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6. (15 pts)

The matrix
0 0 o 1
A=14 -1 1 1
8§ -2 3 -1

is row-equivalent to the matrix

[3 points| (a) The rank of A is

2

[3 points| (b) The nullity of A is

4

Answer: Rank of A is:
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Answer: Nullity of A is:

[3 points] (c) List a set of basis vectors for the column space of A.

Answer: Basis for column space of A is:
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[3 points] (d) List a set of basis vectors for the null space of A. — [ﬁ" ] = [?gb
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Answer: Basis for nullspace of A is:

H

3 points] (e) Give an example of a nontrivial linear dependency amongst the columns of A.
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Part B
1. (17 pts) For the differential equation

(D? +3)(D + 1)y = ¢,

[7 points] (a) Find the general solution y. to its associated homogeneous differential equation
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[7 points](b) Find a particular solution y, to the differential equation.
%: Ae®  note Dy=1y so plas
to (Eatoryy=ef .
/a(;ir (("-+3)L[l+()IM€{'):?/

6Y A’@F:-C
, % = ‘_@f_— A: '/é:‘{-
90"z

Answer: y, = 1

6'(@LL

[3 points](c) Determine the general solution to the differential equation.

T (@) (b)




2. (16 pts) Consider the 3 x 3 matrix

1 0 0 0
1 -1 0 o0
-3 2 -1 0

1 0 1 1

[4 points] (a) Determine the eigenvalues of A.

I Lowor-b so Awasvalk onfies

Answer: Eigenvalues are: {Z. 4_
J/

[8 points] (b) Determine the eigenspaces corresponding to each of the eigenvalues of A. In

your answer make sure to label so that it can be determined which eigenspace belongs to
which eigenvalue
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[4 points] (¢) Determine if A is defective or nondefective. Justify your answer.

| Circle final answer. A is(dgfecti% or nondefective? i
——— "

Explanation: /4_[» mUQ+ 3 (.:I €l§€mw:mcvvf ﬁ:{ I{h\( Vm'ﬁ"/x'
—Nof Wmc)w-

3. (17 pts) Solve the initial value problem

y' —2y +5y=10

with y(0) = —3,y/(0) = L. (DZZ AY; (—T)\[) =0
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4. (15 pts) A small mass m is attached to a wall with a horizontal spring with spring
constant k. The floor the system lies on has friction coefficient ¢. The y-axis is perpendicular
to the wall, pointing away from it, and the mass is confined to move along only this direction
for this problem. As usual, we set ¥ = 0 to be the rest position of the spring. Under these
assumptions, with no further forces besides those of the spring and friction, the spring
displacement y satisfies the following “simple harmonic oscillator” differential equation:

. &+ K -
y"+%y’+£y = 0. @;:ﬂ’l/pjiﬁﬂjtﬂ“o

where m, k, ¢ > 0 and the independent variable is time ¢. Each part in tl following scenarios
is independent of each other part with different parameters. In each part either select the
most correct answer out of the selection given or enter a numerical aswer if required
wffse S 1 L G < W= 2 et
M7 Zm “"_5:__“
(a} Suppose that in suitable units, the values of ¢, k,m are ¢ = 3,k = 1,m = 1. If the

spring is displaced from rest the following will occur: c —l( le 9-4= Y')
W w:‘u( el

ﬁThe spring will return to rest over time without undergoing oscillations. (,/

U The spring will undergo decaying oscillations, whose amplitude decays exponen-
tially over time.

U The spring will undergo osclliations, whose amplitude remains constant over time.

(b) Suppose that in suitable units, the values of ¢, k,m are ¢ = 4,k = 3,m = 2. If the
spring is displaced from rest the following will occur: Ct'llhw\: [ G- ~Y{()= g <o

Om«r)létc vint §
L1 The spring will return to rest over time without undergoing oscillations. Wlls - _z_f_ 2 L ﬁ
The spring will undergo decaying oscillations, whose amplitude decays exponen- %Y

tially over time. :‘E'C‘\V "(9

. . _— . . . =
U The spring will undergo osclliations, whose amplitude remains constant over time.

(c) Suppose that in suitable units, the values of ¢,k,m are ¢ = 0,k = 2,m = 2. The

natural frequency of the system is equal to: 7—-_qu = UL__L[ )
Natural Frequency= (C\fculw ')‘_’:L l ) /UU{ Ca JT)

= C +C -(1
(d) Suppose that in suitable units, the values of ¢, k, m are ¢ = 0, k 2,m (-’M‘{ %gld a Iﬁcc;t (1€)

drives the spring with force F' = 10 cos(wt). For which value of w will the response of
the system be strongest in terms of magnitude of oscillations?

Value of w for strongest response: i ( Iy
AME a8 ( C)




5. (18 pts)

9 points] (a) Suppose a system &' = Az where A is a 2 x 2 matrix has general solution

. 2 1
X = C1F-3t [1:| T CQF:"” [2] .

Find A. 205
3”"‘%1 l-] &%mvcc/",lfw
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Answer: A = 1 M
2
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[9 points] (b) Let B be a 2 x 2 real matrix which has eigenvalue 2 + 3¢ with corresponding

Lol Write down the general solution to &' = B# where the independent
1
variable is time ¢. Please make sure that the two basis solutions used in the final

form of your general solution are real valued quantities.
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6. (17 pts) Consider the second order linear ODE:
¥+ 3y +2y=0.

[5 points] (a) Rewrite this as a homogeneous linear systerinof first order ODEs: &' = Az.

Describe your choice of & and A explicitly.
X ( "ﬂ =X

)(2, - >(2, = {:: /3\1 (-th
Answer: & = .
BT I
Y ¥
Answer: A = 01
55

[9 points] (b) Find the eigenvalues and corresponding eigenvectors of your matrix A from

part (a). )(L 3XT+’L jXH )(K{—L) L
/
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Eigenvalues: S _
Eigenvectors: -
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[3 points] (c) Write down the general solution to the system, i.e., the general solution for .
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Answer: £ =




