Math 165 Written Homework 9
Due Saturday, April 6th at 11:59 pm on gradescope

1. For each part below, determine if the given mapping T is linear or nonlinear. If it is linear, prove it by verifying the necessary conditions. If it is not linear, provide an example showing that T fails to have the relevant property:
(a) $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ defined by $T(A)=A B-B A$, where B is a fixed $n \times n$ matrix.
(b) $T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ defined by $T(A)=A^{2}$.
(c) $T: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by $T(A)=\operatorname{det}(A)$.
2. (a) Let $T_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the matrix transformation corresponding to the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

This means $T_{A}(\vec{x})=A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{4}$. Find a basis for the kernel of $T_{\mathbb{A}}$ and for the range of $T_{\mathbb{A}}$.
(b) Let $L: P_{3} \rightarrow \mathbb{R}^{2}$ be the linear map $L(f)=(f(0), f(1))$. For example $L\left(x^{2}+1\right)=(1,2)$. Find a basis for the kernel of L and for the range of L.

