Math 165 Written Homework 7
Due Friday. March 22 at 11:59 pm on gradescope

Problems

1. Prove that $W=\left\{p(x) \in P_{1}(\mathbb{R}) \mid 2 p^{\prime}(0)=p(1)\right\}$ is a subspace of $P_{1}(\mathbb{R})$. Determine a basis for W. Justify your answer. Determine $\operatorname{dim}(W)$.
2. Determine a basis for the following subspaces W of the given vector spaces V. (You do not need to prove that W is a subspace.)
(a) $V=M_{3 \times 3}(\mathbb{R})$. $W=\left\{A \in M_{3 \times 3}(\mathbb{R}) \mid A^{T}=-A\right\}$.
(b) $V=\mathbb{R}^{4}, W=\operatorname{null}(A)$, where

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 2 & 3 & -1 \\
2 & -4 & -9 & 5
\end{array}\right]
$$

3. Determine whether the set $S=\{(1,2,0,-2),(1,0,3,2),(0,-2,1,1)\} \subset$ \mathbb{R}^{4} is linearly independent. Then determine whether or not $\vec{b}=(1,1,1,1)$ is in $\operatorname{span}(S)$. Show your work to support your answer.
4. Let a set S consist of 5 vectors in \mathbb{R}^{5}. Suppose we create a matrix A such that the columns of A are the transposes of the vectors of S.
(a) Suppose $\operatorname{rank}(A)=5$. Is S linearly independent? Does it span \mathbb{R}^{5} ? Explain your answers, or explain why there is not enough information.
(b) Suppose $\operatorname{rank}(A)=3$. Is S linearly independent? Does it span \mathbb{R}^{5} ? Explain your answers, or explain why there is not enough information.
