Written Homework 6

Due, Friday, March 8 at midnight

1. Recall, that the dot product of an *n*-dimensional row vector $[a_1, \ldots, a_n]$ and an *n*-dimensional column vector $[b_1, \ldots, b_n]^T$ is given by $\sum_{k=1}^n a_k b_k$. We define the dot product of two *n*-dimensional column vectors \vec{v} and \vec{w} similarly as the matrix product $\vec{v}^T \vec{w}$ and similarly for two *n*-dimensional row vectors \vec{a}, \vec{b} we define the dot product as $\vec{a}\vec{b}^T$. In all cases it comes down to the sum of products of corresponding entries of the vectors.

(a) In Euclidean geometry, the length of a vector \vec{v} is denoted $||\vec{v}||$ and is given by the formula $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$ where \cdot stands for dot product. Find the length of the vector $\vec{v} = (1, 2, 3)$.

(b) In Euclidean geometry, two *n*-dimensional vectors \vec{v}, \vec{w} are said to be **orthogonal** if $\vec{v} \cdot \vec{w} = 0$. Given an $m \times n$ matrix \mathbb{A} , the **nullspace** of \mathbb{A} is defined to be the set of solutions \vec{x} to the homogeneous equation $\mathbb{A}\vec{x} = \vec{0}$. Explain why an *n*-dimensional column vector \vec{x} lies in the nullspace of \mathbb{A} if and only if it is orthogonal to all the rows of \mathbb{A} .

(c) Given the row vector $\vec{v} = (1, 2, 3)$, describe **all** the 3-dimensional column vectors \vec{x} which are orthogonal to \vec{v} . (Hint: Consider $\mathbb{A}\vec{x} = \vec{0}$ where $\mathbb{A} = \vec{v}$.) (d) Given the row vectors $\vec{v}_1 = (1, 1, 1)$ and $\vec{v}_2 = (1, 2, 3)$, describe **all** 3-dimensional column vectors \vec{x} that are orthogonal to **both** \vec{v}_1 and \vec{v}_2 .

2. (a) Let $V = \mathbb{R}^2$ be the vector space of 2-dimensional real row vectors. Decide which of the following subsets of V are **vector subspaces** of V and which aren't. Justify your answers.

(i)
$$L_1 = \{(x, y) | y = 3x\}.$$

(ii)
$$L_2 = \{(x, y) | y = 3x + 1\}.$$

(iii) $P = \{(x, y) | y = x^2\}.$

(b) Let $W = Mat_{2\times 2}(\mathbb{R})$ be the vector space of 2×2 real matrices. Decide which of the following subsets of W are **vector subspaces** of W and which

aren't. Justify your answers.

(i) $S = \{ \mathbb{A} | tr(\mathbb{A}) = 0 \}$ (Here tr stands for the trace of the matrix.) (ii) $T = \{ \mathbb{A} | tr(\mathbb{A}) = 1 \}$ (iii) $R = \{ \mathbb{A} | \det(\mathbb{A}) = 0 \}.$