Written Homework 6

Due, Friday, March 8 at midnight

1. Recall, that the dot product of an n-dimensional row vector $\left[a_{1}, \ldots, a_{n}\right]$ and an n-dimensional column vector $\left[b_{1}, \ldots, b_{n}\right]^{T}$ is given by $\sum_{k=1}^{n} a_{k} b_{k}$. We define the dot product of two n-dimensional column vectors \vec{v} and \vec{w} similarly as the matrix product $\vec{v}^{T} \vec{w}$ and similarly for two n-dimensional row vectors \vec{a}, \vec{b} we define the dot product as $\vec{a} \vec{b}^{T}$. In all cases it comes down to the sum of products of corresponding entries of the vectors.
(a) In Euclidean geometry, the length of a vector \vec{v} is denoted $\|\vec{v}\|$ and is given by the formula $\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}$ where \cdot stands for dot product. Find the length of the vector $\vec{v}=(1,2,3)$.
(b) In Euclidean geometry, two n-dimensional vectors \vec{v}, \vec{w} are said to be orthogonal if $\vec{v} \cdot \vec{w}=0$. Given an $m \times n$ matrix \mathbb{A}, the nullspace of \mathbb{A} is defined to be the set of solutions \vec{x} to the homogeneous equation $\mathbb{A} \vec{x}=\overrightarrow{0}$. Explain why an n-dimensional column vector \vec{x} lies in the nullspace of \mathbb{A} if and only if it is orthogonal to all the rows of \mathbb{A}.
(c) Given the row vector $\vec{v}=(1,2,3)$, describe all the 3 -dimensional column vectors \vec{x} which are orthogonal to \vec{v}. (Hint: Consider $\mathbb{A} \vec{x}=\overrightarrow{0}$ where $\mathbb{A}=\vec{v}$.) (d) Given the row vectors $\vec{v}_{1}=(1,1,1)$ and $\vec{v}_{2}=(1,2,3)$, describe all 3dimensional column vectors \vec{x} that are orthogonal to both \vec{v}_{1} and \vec{v}_{2}.
2. (a) Let $V=\mathbb{R}^{2}$ be the vector space of 2 -dimensional real row vectors. Decide which of the following subsets of V are vector subspaces of V and which aren't. Justify your answers.
(i) $L_{1}=\{(x, y) \mid y=3 x\}$.
(ii) $L_{2}=\{(x, y) \mid y=3 x+1\}$.
(iii) $P=\left\{(x, y) \mid y=x^{2}\right\}$.
(b) Let $W=\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 real matrices. Decide which of the following subsets of W are vector subspaces of W and which
aren't. Justify your answers.
(i) $S=\{\mathbb{A} \mid \operatorname{tr}(\mathbb{A})=0\}$ (Here tr stands for the trace of the matrix.)
(ii) $T=\{\mathbb{A} \mid \operatorname{tr}(\mathbb{A})=1\}$
(iii) $R=\{\mathbb{A} \mid \operatorname{det}(\mathbb{A})=0\}$.
