Written Homework 5

Due Friday, Mar 1 at 11:59 PM

1. Suppose \mathbb{A} is a $n \times n$ matrix with determinant D.
(a) What is the determinant of \mathbb{A}^{k}, for any integer $k \geq 1$ as a function of D, k and n ? (It is OK if it does not depend on all the variables stated.)
(b) What is the determinant of $\mathbb{B}=c \mathbb{A}$ for any real number c as a function of D, c and n ?
(c) Suppose \mathbb{A} has reduced row echelon form equal to the $n \times n$ identity matrix and in order to reduce it to this RREF you have to use r row swaps (the $P_{i j}$ operations), and m operations of multiplying a row by a nonzero scalar where the scalars involved during the process were $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$. In addition you also use an unspecified number of operations of the type $A_{i j}(c)$ of adding a multiple of one row to a distinct row during the reduction process. Describe a formula for $D=\operatorname{det}(\mathbb{A})$ in terms of the variables $n, r, m, \alpha_{1}, \ldots, \alpha_{m}$ and explain how you got your answer.
(d) What can you say about $\operatorname{det}(\mathbb{A})$ if the RREF of \mathbb{A} is not the $n \times n$ identity matrix?
2. Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & 4 & 1 \\ 0 & 2 & -6\end{array}\right]$.
(a) Find A^{-1}.
(b) Find $\operatorname{det}(A), \operatorname{det}\left(A^{T}\right)$, and $\operatorname{det}\left(A^{-1}\right)$.
(c) Solve the system

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
2 x_{1}+4 x_{2}+x_{3} & =0 \\
2 x_{2}-6 x_{3} & =3
\end{aligned}
$$

