Written Homework 4

Due Friday, February 23 at midnight
1.
(a) Determine all values of the constant k for which the following system has (i) no solution, (ii) an infinite number of solutions, and (iii) a unique solution.

$$
\begin{array}{rc}
x_{1}+2 x_{2}-x_{3} & =3 \\
2 x_{1}+5 x_{2}+x_{3} & =7 \\
x_{1}+x_{2}-k^{2} x_{3} & =-k
\end{array}
$$

In (ii) and (iii), provide a solution set in terms of k and an appropriate number of free parameters.
(b) Determine the solution set, if it exists, of the homogeneous system whose coefficient matrix is

$$
A=\left[\begin{array}{cc}
1-i & 2 i \\
1+i & -2
\end{array}\right]
$$

2.

Let $A=\left[\begin{array}{cccc}1 & 1 & 0 & -3 \\ 0 & 1 & 4 & 1 \\ -2 & 0 & -1 & 0 \\ -3 & 1 & 2 & 0\end{array}\right]$ and $C=\left[\begin{array}{cccc}-5 & -5 & 5 & 7 \\ 6 & -1 & 13 & 20 \\ -3 & 0 & -11 & -19 \\ -1 & -2 & -5 & -11\end{array}\right]$.
Suppose a matrix B satisfies $A B=C$. Without inverting A, find the third column of B.

