Math 165 Written Homework 7
Due Friday. March 22 at 11:59 pm on gradescope

## Problems

1. Prove that $W=\left\{p(x) \in P_{1}(\mathbb{R}) \mid 2 p^{\prime}(0)=p(1)\right\}$ is a subspace of $P_{1}(\mathbb{R})$. Determine a basis for $W$. Justify your answer. Determine $\operatorname{dim}(W)$.
2. Determine a basis for the following subspaces $W$ of the given vector spaces $V$. (You do not need to prove that $W$ is a subspace.)
(a) $V=M_{3 \times 3}(\mathbb{R}) . W=\left\{A \in M_{3 \times 3}(\mathbb{R}) \mid A^{T}=-A\right\}$.
(b) $V=\mathbb{R}^{4}, W=\operatorname{null}(A)$, where

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 2 & 3 & -1 \\
2 & -4 & -9 & 5
\end{array}\right]
$$

3. Determine whether the set $S=\{(1,2,0,-2),(1,0,3,2),(0,-2,1,1)\} \subset$ $\mathbb{R}^{4}$ is linearly independent. Then determine whether or not $\vec{b}=(1,1,1,1)$ is in $\operatorname{span}(S)$. Show your work to support your answer.
4. Let a set $S$ consist of 5 vectors in $\mathbb{R}^{5}$. Suppose we create a matrix $A$ such that the columns of $A$ are the transposes of the vectors of $S$.
(a) Suppose $\operatorname{rank}(A)=5$. Is $S$ linearly independent? Does it span $\mathbb{R}^{5}$ ? Explain your answers, or explain why there is not enough information.
(b) Suppose $\operatorname{rank}(A)=3$. Is $S$ linearly independent? Does it span $\mathbb{R}^{5}$ ? Explain your answers, or explain why there is not enough information.
5. Prove that $W=\left\{p(x) \in P_{1}(\mathbb{R}) \mid 2 p^{\prime}(0)=p(1)\right\}$ is a subspace of $P_{1}(\mathbb{R})$. Determine a basis for $W$. Justify your answer. Determine $\operatorname{dim}(W)$.
Pf that $W$ is a subspace.
(a) Let $P_{0}(x)$ be the zero vector in $P_{1}(\mathbb{R})$. That is, $P_{0}(x)$ is the constant function that sends all $x$ to 0 .
The $2 p_{0}^{\prime}(x)=0=p(1)$, so $p_{0}(x) \in W$.
(1) Let $p_{1}(x), p_{2}(x) \in \omega$. the $2\left(p_{1}+p_{2}\right)^{\prime}(0)=2 p_{1}^{\prime}(0)+2 p_{2}^{\prime}(0)$

$$
\begin{aligned}
& =p_{1}(1)+p_{2}(1) \text {, be cause } p_{1}, p_{2} \in w . \\
& =\left(p_{1}+p_{2}\right)(1) .
\end{aligned}
$$

Hence $\omega$ is closed undo scalar mult.plic action.
(1) Let $\rho(x) \in W_{\text {are }} \lambda \in \mathbb{R}$.

The $2(\lambda p)^{\prime}(0)=(2 \lambda) p^{\prime}(0)=\lambda\left(2 p^{\prime}(0)\right)=\lambda(p(1))=(\lambda p)(1)$.
So $W$ is closed under scaler mult.pícation.
2. Determine a basis for the following subspaces $W$ of the given vector spaces $V$. (You do not need to prove that $W$ is a subspace.)
(a) $V=M_{3 \times 3}(\mathbb{R})$. $W=\left\{A \in M_{3 \times 3}(\mathbb{R}) \mid A^{T}=-A\right\}$.
(b) $V=\mathbb{R}^{4}, W=\operatorname{null}(A)$, where

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 2 & 3 & -1 \\
2 & -4 & -9 & 5
\end{array}\right]
$$

(a) Since $A^{\top}=-A_{1}$ it met be true tat $a_{i i}=-q_{i i}$ So r each $i$. So $q_{i i}=0$. Further, $a_{j i}=-a_{i j}$. Then a genera vector in $w$ has this form:

$$
\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
-a_{12} & 0 & a_{23} \\
-a_{13} & -a_{23} & 0
\end{array}\right] \text {. Treaty } a_{121} a_{13} \text {, owl } a_{23} \text { as free parameters, }
$$

we get the basis:

$$
\beta=\left\{\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\right\}
$$

(b)

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 2 & 3 & -1 \\
2 & -4 & -9 & 5
\end{array}\right] \xrightarrow{R_{3}-2 R_{1}}\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 2 & 3 & -1 \\
0 & -6 & -9 & 3
\end{array}\right] \xrightarrow{R_{3}+3 R_{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 2 & 3 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{\frac{1}{2} R_{2}}\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 3 / 2 \\
0 & 0 & 0 \\
\hline
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{cccc}
1 & 0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 1 & \frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right] . \text { Let } x_{3}=5, x_{4}=t
\end{aligned}
$$

Th r

$$
\begin{aligned}
& x_{1}=\frac{3}{2} s-\frac{3}{2} t \\
& x_{2}=-\frac{3}{2} s+\frac{1}{2} t
\end{aligned}
$$

A general vector in $w$ has this farm:

$$
\begin{aligned}
& \text { A general vector in } w \text { has this tarwi } \\
& \left(\frac{3}{2} s-\frac{3}{2} t,-\frac{3}{2} s+\frac{1}{2} t, s, t\right)=s\left(\frac{3}{2},-\frac{3}{2}, 1,0\right)+t\left(-\frac{3}{2}, \frac{1}{2}, 0,1\right) \\
& \text { so } \beta=\left\{\left(\frac{3}{2},-\frac{3}{2}, 1,0\right),\left(-\frac{3}{2}, \frac{1}{2}, 01\right)\right\} .
\end{aligned}
$$

OR

$$
\{(3,-3,2,0),(-3,1,0,2)\}
$$

3. Determine whether the set $S=\{(1,2,0,-2),(1,0,3,2),(0,-2,1,1)\} \subset$ $\mathbb{R}^{4}$ is linearly independent. Then determine whether or not $\vec{b}=(1,1,1,1)$ is in $\operatorname{span}(S)$. Show your work to support your answer.

We can address both questions at the same time.

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
2 & 0 & -2 & 1 \\
0 & 3 & 1 & 1 \\
-2 & 2 & 1 & 1
\end{array}\right] \xrightarrow[R_{4}+2 R_{1}]{R_{2}-2 R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & -2 & -2 & -1 \\
0 & 3 & 1 & 1 \\
0 & 4 & 1 & 3
\end{array}\right] \xrightarrow{R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 3 & 1 & 1 \\
0 & 4 & 1 & 3
\end{array}\right]} \\
& \underset{R_{3}-4 R_{2}}{R_{3}-3 R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 5 & 3
\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 5 & 3
\end{array}\right] \xrightarrow{R_{4}-5 R_{3}}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & \frac{1}{4} \\
0 & 0 & 0 & \frac{7}{4}
\end{array}\right]
\end{aligned}
$$

We see that A has rake 3 , so $S$ is indipendut. We sac tet $(A(b)$ has rank 4, so the suster is in consistent. This rears $b^{2} \& S p a r(S)$.
4. Let a set $S$ consist of 5 vectors in $\mathbb{R}^{5}$. Suppose we create a matrix $A$ such that the columns of $A$ are the transposes of the vectors of $S$.
(a) Suppose $\operatorname{rank}(A)=5$. Is $S$ linearly independent? Does it span $\mathbb{R}^{5}$ ? Explain your answers, or explain why there is not enough information.
(b) Suppose $\operatorname{rank}(A)=3$. Is $S$ linearly independent? Does it span $\mathbb{R}^{5}$ ? Explain your answers, or explain why there is not enough information.
(a) Yes. The ref form of $A$ will be $I_{5}$. So the columbus of $A$ ar inbipenent. Since it's a set of 5 inerealt vectors in a 5 -divensial space, $s$ does span $\mathbb{R}^{5}$.
(b) No, as the rears 2 columns are lived cowbintiors of the others. An impupelsit set of 3 vectors car not soon a 5-dim-sid space, so $s$ does not span $\mathbb{R}^{5}$.

