MATH 165: WRITTEN HW 6

DUE: FRIDAY, OCT 25, 11:59PM ON GRADESCOPE UNIVERSITY OF ROCHESTER, FALL 2024

Problem 1. The **dot product** of an *n*-dimensional row vector $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ and an *n*-dimensional column vector $\begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^T$ is given by $\sum_{k=1}^n a_k b_k = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$

In general, we define the dot product of two vectors \vec{v} and \vec{w} in \mathbb{R}^n (so each of them can be any of *n*-tuple, row vector, or column vector) similarly as the sum of products of corresponding entries of the vectors.

(a) In Euclidean geometry, the **length** of a vector \vec{v} in \mathbb{R}^n is denoted by $\|\vec{v}\|$ and given by the formula

$$\|\vec{v}\| = \sqrt{\vec{v}\cdot\vec{v}}$$

where \cdot stands for dot product. Find the length of the vector $\vec{v} = (1, 2, 3)$.

- (b) Two vectors \vec{v}, \vec{w} in \mathbb{R}^n are said to be **orthogonal** if $\vec{v} \cdot \vec{w} = 0$. Explain why an *n*-dimensional column vector \vec{x} lies in the null space of an $m \times n$ matrix A if and only if it is orthogonal to **all** the row vectors of A.
- (c) Given the row vector $\vec{v} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, describe all the 3-dimensional column vectors \vec{x} which are orthogonal to \vec{v} . (*Hint*: Consider $A\vec{x} = 0$ where $A = \vec{v}$.)
- (d) Given the row vectors $\vec{v_1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, describe all 3-dimensional column vectors \vec{x} that are orthogonal to **both** $\vec{v_1}$ and $\vec{v_2}$.
- **Problem 2.** (a) Let $V = \mathbb{R}^2$. Decide which of the following subsets of V are subspaces of V and which are not. Justify your answers.

(i)
$$L_1 = \{(x, y) : y = 3x\}.$$

- (ii) $L_2 = \{(x, y) : y = 3x + 1\}.$
- (iii) $P = \{(x, y) : y = x^2\}.$
- (b) Let $W = M_2(\mathbb{R})$ be the vector space of 2×2 real matrices. Decide which of the following subsets of W are **subspaces** of W and which are not. Justify your answers.
 - (i) $S = \{A : tr(A) = 0\}$ (here tr stands for the trace of the matrix).
 - (ii) $T = \{A : tr(A) = 1\}.$
 - (iii) $R = \{A : \det(A) = 0\}.$