MTH 165

Midterm 2
April 2, 2024

Name: Solutions

Student ID:

(If you do not know your SID, provide your netid.)

The Department of Mathematics adheres to the university's academic honesty policy. In addition, the following restrictions apply to this exam:

1. No phones, calculators or any other devices that could help you answer any part of this exam are permitted.
2. No notes or formula sheets or similar documents are permitted.

PLEASE COPY THE HONOR PLEDGE AND SIGN:
(Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE: \qquad

For your information: There are six problems on this exam.

1. (14 points) Let
$A=\left[\begin{array}{cccc}0 & 0 & -4 & 1 \\ -1 & 4 & -4 & 8 \\ 2 & 4 & -4 & -5 \\ 1 & 2 & 0 & -6\end{array}\right]$.

$$
\begin{aligned}
& \mathrm{B}= \\
& 1 \\
& 1
\end{aligned} 2
$$

(a) Using elementary row operations, transform A to an upper triangular matrix B. Write your matrix B in the box provided.

Grading note: There are infinitely-many correct solutions. If a student labeled row operations clearly, and if multiplying the determinant of B by the appropriate scalars resulting from clearly labeled EROs gave the correct determinant of A, full credit was awarded. If a student labeled row operations clearly, but the resulting determinant was not correct, 2/4 points was awarded.

This problem continues on the next page.
(b) Calculate the determinant of the matrix B you found in (a).

$$
(1)(6)(-4)(-6)=144
$$

Answer:

144
(c) Calculate the determinant of $\frac{1}{2} B$.

$$
\left(\frac{1}{2}\right)^{4}(144)=\frac{144}{16}=9
$$

Answer:
(d) Calculate the determinant of the original matrix A.

$$
\begin{aligned}
& \text { Of the now operations performed } \\
& \text { in part (a), only the first -permuting } \\
& \text { sous } 1 \text { ane } 4 \text { - affect determinat. } \\
& \text { That apnation multiplies the determinant } \\
& \text { by }-1 \text {. }
\end{aligned}
$$

Answer:
-144
2. (15 points)

Let $W=\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid \operatorname{trace}(A)=0\right\}$. (Recall that $\operatorname{trace}(A)$ is the sum of the diagonal entries of A.)

Show that W is a subspace of $M_{2 \times 2}(\mathbb{R})$.
(1) $\overrightarrow{0}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ has trace O. So W. 3 not empty.
(2) Suppose $A, B \in W$.

$$
\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)=0+0=0 \text {. }
$$

So ω is $c l o s e d ~ u n d s ~ v e c t o r ~ r e d i t i o n . ~$
(3) Suppose $A \in w$ and $\lambda \in \mathbb{R}$.

$$
\operatorname{tr}(\lambda A)=\lambda \operatorname{tr}(A)=\lambda(0)=0
$$

so $w .3$ clogal umber scalar nultiplization.
Hence W is a subspace of $\mathcal{M}_{2 \times 2}(\mathbb{R})$.

Alternate proof:
If $A \in W$, ten $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $a+d=0$.
So $d=-a$. Then $W=\left\{A \in M_{2}(\mathbb{R}) \left\lvert\, A=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right] \begin{array}{c}\text { for sides } \\ a, b, c\end{array}\right.\right\}$.
Hence $W=\operatorname{span}\left\{\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$.
The span of a subset of V is always a s-bipace of V.

Really alternote proof.

$$
\begin{aligned}
& \text { dy alternate prot. } \\
& T: M_{2 \times 2}(R) \rightarrow \mathbb{R} \text { by } T(A)=\operatorname{trace}(A) \text { is a }
\end{aligned}
$$

linear transfornation. Its kevel is W. The kernel of a linear trans formation is a silhspace of the do main.
3. (12 points) Let

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
t \\
2
\end{array}\right]\right\}
$$

be a collection of vectors in \mathbb{R}^{4}.
(a) For what values of t is S a spanning set for \mathbb{R}^{4} ?

$$
\begin{aligned}
& \text { Since } \operatorname{dim}\left(\mathbb{R}^{4}\right)=4 \text {, any spauniz } \\
& \text { set must han of least } 4 \text { rectors. }
\end{aligned}
$$

Answer:
No possible t.
(b) For what values of t is S linearly independent?

$$
\begin{aligned}
& \text { Set } A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -1 \\
3 & 1 & t \\
0 & 2 & 2
\end{array}\right] \xrightarrow{R_{3}-3 R_{1}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -1 \\
0 & -2 & t-3 \\
0 & 2 & 2
\end{array}\right] \\
& \xrightarrow[R_{4}+2 R_{2}]{R_{3}-2 R_{2}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -1 \\
0 & 0 & t-1 \\
0 & 0 & 0
\end{array}\right] \text {. } \begin{array}{l}
\text { Then th columns ore } \\
\text { irdoperdit if and only } \\
\text { if } t-1 \neq 0 .
\end{array}
\end{aligned}
$$

Answer:
$t \neq l$.
(c) In the case S is linearly dependent, find a basis for $\operatorname{Span}(S)$.

$$
\begin{aligned}
& \text { If } t=1 \text {, the last row operation above } \\
& \text { gus } \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] . \text { Hence colvumes lar } 2 \text { of } A \text { are }} \\
& \text { Answer: } \\
& \left.\beta=\left\{\begin{array}{c}
1 \\
0 \\
3 \\
0
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right]\right\}
\end{aligned}
$$

4. (20 points) For each of the following subspaces W of the given vector spaces V, determine a basis β for W and find its dimension. You do not have to prove that W is a subspace. You should show enough work to convince a reader that you have provided an independent spanning set. Further proof is not required.
(a) $V=P_{2}(\mathbb{R})$ and $W=\left\{p(x) \in P_{2}(\mathbb{R}) \mid p^{\prime \prime}(0)=p^{\prime}(2)\right\}$.

$$
\text { let } \begin{aligned}
& p(x) \in P_{2}\left((R) \text {. Set } p(x)=a x^{2}+b x+c .\right. \\
& p^{\prime}(x)=2 a x+b . \\
& p^{\prime}(2)=4 a+b \\
& p^{\prime \prime}(x)=2 a \\
& p^{\prime \prime}(0)=2 a \\
& \text { If } 2 a=4 a+b \\
& \text { tan } b=-2 a \\
& \text { So vector in w has ta for } \\
& a x^{2}-2 a x+c . \\
& \beta=\left\{x^{2}-2 x, 1\right\}
\end{aligned}
$$

(b) (The instructions for this problem appear on the previous page.)

$$
V=M_{3 \times 3}(\mathbb{R}) \text { and } W=\left\{A \in M_{3 \times 3}(\mathbb{R}) \mid \operatorname{trace}(A)=0\right\}
$$

(Note: Trace is defined in Q2, but this V is the 3×3 matrices, not the 2×2 ones in Q2.)

A rector in w has th form

Then we get
$\beta=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right.$ $\left.\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\right\}$
5. (15 points) Let

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & 1 & 0 \\
-1 & 2 & 3 & 0 & 1 \\
0 & 2 & 2 & -2 & 1
\end{array}\right]
$$

(a) Determine a basis for column space of A and find its dimension.

$$
\begin{aligned}
& A \xrightarrow{R_{2}+R_{1}}\left[\begin{array}{ccccc}
1 & 0 & 2 & 1 & 0 \\
0 & 2 & 5 & 1 & 1 \\
0 & 2 & 2 & -2 & 1
\end{array}\right] \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 2 & 5 & 1 \\
1 \\
0 & 0 & -3 & -3 \\
0
\end{array}\right] \\
& \stackrel{\frac{1}{2} R_{2}}{-\frac{1}{3} R_{3}}\left[\begin{array}{lllll}
1 & 0 & 2 & 1 & 0 \\
0 & 1 & \frac{5}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \xrightarrow[R_{2}-\frac{5}{2} R_{3}]{R_{1}-2 R_{3}}\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & -2 & \frac{1}{2} \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

In this RREF form E, the first 3 columns are induperdt. Hence ter first 3 colums of A are inepult.

Alternative Solution. (Justification required for credit.)
Since $\operatorname{rank}(A)=3$, the column space of A is a 3 -diversional subspace of \mathbb{R}^{3}. So the coluruspace is equal to \mathbb{R}^{3}. Tea any basis fo \mathbb{R}^{3} will suffice.

Answer:

$$
\left.\beta=\left\{(-1)^{\prime}\right) \cdot\left(\frac{0}{2}\right),\left(\frac{2}{2}\right)\right\}
$$

This problem continues on the next page.
(b) Determine a basis for null space of A and find its dimension.

$$
\begin{gathered}
E=\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & -2 & \frac{1}{2} \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \quad \begin{array}{c}
\text { set } x_{y}=s, x_{5}=t \\
x_{1}-s=0 \\
x_{2}-2 s+\frac{1}{2} t=0 \\
x_{3}+s=0 \\
\operatorname{null}(A)=\left\{\left(s, 2 s-\frac{1}{2} t,-s, s, t\right)(s, t \in(R\} .\right. \\
\beta=\left\{(1,2,-1,1,0),\left(0,-\frac{1}{2}, 0,0,1\right)\right\}
\end{array}
\end{gathered}
$$

Answer:

$$
\begin{aligned}
& \beta=\left\{(1,2,-1,1,0),\left(0,-\frac{1}{2}, 0,0,1\right)\right\} \\
& d_{0}=2
\end{aligned}
$$

(c) Show that your results in (a) and (b) satisfy the conclusion of the Rank-Nullity Theorem.

$$
\begin{gathered}
\operatorname{ravk} A=3, \quad \operatorname{dim}(\operatorname{nall}(A))=2, \# \text { of } \operatorname{col} \lim =5 . \\
5=3+2
\end{gathered}
$$

6. (24 points) Please mark each question true or false. Please fill in the box or use a check mark in the box rather than circling your answer. If you make a mistake, correct it and leave a note for your grader confirming your final answer.

Partial credit will not be offered for this problem. You do not need to justify your answer.
(a) The set of all 2×2 matrices A with real entries such that $\operatorname{det} A=0$ is a subspace of $M_{2 \times 2}(\mathbb{R})$.
Not closed under addition.

True
\star False

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=0 \text { in } \operatorname{det}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=0, \text { but } \\
& \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)=1 .
\end{aligned}
$$

(b) The subset

$$
V=\left\{A \in M_{2 \times 2}(\mathbb{R}) \mid A+I \text { is invertible }\right\}
$$

is a subspace of $M_{2 \times 2}(\mathbb{R})$ (Here I is the 2×2 identity matrix.)

$$
\begin{array}{lc}
& \text { Not closed unbar addition: } \\
\square \text { True } & \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+I=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { is inurtible } \\
\boxed{\text { False }} & \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+I=\left(\begin{array}{ll}
1 & 0 \\
1
\end{array}\right) \text { is invertible. } \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+I=\left(\begin{array}{ll}
1 & 1 \\
1
\end{array}\right) \text { is not invertible. }
\end{array}
$$

(c) Let A be an $n \times n$ matrix such that $A^{T} A=I_{n}$, where I_{n} is the $n \times n$ identity matrix. Then $\operatorname{det}(A)= \pm 1$

$$
\text { Since } \operatorname{det}\left(A^{\top}\right)=\operatorname{let} A
$$

母 True

$$
\operatorname{det}\left(A^{\top} A\right)=\operatorname{det}\left(A^{2}\right)=(\operatorname{let} A)^{2} \text {. }
$$False

$$
\begin{aligned}
\text { If }(\operatorname{det}(A))^{2} & =\operatorname{det}\left(I_{n}\right)=1, \\
\text { ten } \operatorname{det} A & = \pm 1 .
\end{aligned}
$$

(d) Let $A \in M_{m \times n}(\mathbb{R})$ and $m<n$. Then the column space and the nullspace of A are subspaces of \mathbb{R}^{n}.True
The columspace is a subspace of \mathbb{R}^{m}. (False
(e) If an $m \times n$ matrix has rank n, then $m \geq n$.
False
(f) A 3×4 matrix could have equal rank and nullity, but a 4×3 matrix can not.

Scratch Work

