MTH 165

Midterm 1
February 27, 2024

Name: Solutions

Student ID:

(If you do not know your SID, provide your netid.)

The Department of Mathematics adheres to the university's academic honesty policy. In addition, the following restrictions apply to this exam:

1. No phones, calculators or any other devices that could help you answer any part of this exam are permitted.
2. No notes or formula sheets or similar documents are permitted.

PLEASE COPY THE HONOR PLEDGE AND SIGN:
(Cursive is not required).
I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE: \qquad

For your information: There are seven problems on this exam.

1. (15 points) Solve the initial value problem. (Solve explicitly.) Circle your answer.

$$
\begin{aligned}
& y \sin ^{2}(t)+\sec (t) \frac{d y}{d t}=\sin ^{2}(t) y^{2}, \quad y(\pi)=2 \\
& \sec t \frac{d y}{d t}=\sin ^{2} t\left(y^{2}-y\right) \\
& \int \frac{1}{y^{2}-y} \frac{d y}{d t}=\int \cos t \sin ^{2} t d t \\
& \frac{1}{y^{2}-y}=\frac{1}{y-1}-\frac{1}{y} \\
& \int \frac{1}{y^{-1}}-\frac{1}{y} d y=\int \cos t \sin ^{2} t d t \\
& d_{n}=\cos t d t \\
& \int u^{2} d=\frac{u^{3}}{3}+c_{1} \\
& \ln |y-1|-\ln |y|=\frac{\sin 3 t}{3}+c \\
& \ln \left|\frac{y-1}{y}\right|=\frac{\sin ^{3} t}{3}+c \\
& \left|\frac{y-1}{y}\right|=e^{\frac{\sin 3 t}{3}} e^{c} \\
& \frac{y-1}{y}=c_{1} e^{\frac{\sin ^{3} t}{3}} \\
& y-1=c_{1} y e^{5 \cdot \frac{3 t}{3}} \\
& y\left(1-c_{1} e^{5 \frac{x^{3} t}{3}}\right)=1 \\
& y=\frac{1}{1-c_{1} e^{\sin \frac{3}{3} t}} \\
& \begin{aligned}
y(\pi) & =2 \\
2 & =\frac{1}{c_{1} e^{0}}
\end{aligned} \\
& \text { sc. }=1 \\
& c_{1}=\frac{1}{2} \\
& \text { Ans: } \\
& \text { Ans: } \frac{1}{1-\frac{1}{2} e^{\frac{\sin 3 t}{3}}}
\end{aligned}
$$

2. (15 points)
(a) Find the general solution to the following first order differential equation:

$$
y^{\prime}+\frac{2 y}{x}=x-1
$$

(b) Find the solution curve that passes through the point $(1,1)$?

Circle your answers.

$$
\begin{aligned}
T(x) & =e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2} \\
x^{2} y & =\int x^{2}(x-1) d x \\
& =\frac{x^{4}}{4}-\frac{x^{3}}{3}+c \\
y & =\frac{x^{2}}{4}-\frac{x}{3}+\frac{c}{x^{2}}
\end{aligned}
$$

If $x=1, y=1$.

$$
1=\frac{1}{4}-\frac{1}{3}+c
$$

$$
c=\frac{13}{12}
$$

$$
y=\frac{x^{2}}{4}-\frac{x^{3}}{3}+\frac{13}{12 x^{2}}
$$

3. (20 points) Suppose a tank initially contains 40 litres of water in which is mixed 20 grams of salt. Suppose a solution flows into the tank at a rate of 1 litre per minute, and suppose the concentration of salt in this solution in 4 grams per liter. Suppose an additional source provides 1 litre of pure water to the tank each minute. Suppose a well-mixed solution flows out of the tank at a rate of 2 litres per minute.
(a) (10 pts) Determine a differential equation that gives the amount of salt as a function of time.
(b) (10 pts) Determine the concentration of salt in the tank as $t \rightarrow \infty$. Justify your answer.
(a) Concentration in is
rate in $=2 \mathrm{~L} / \mathrm{min}$
rate out $=2 \mathrm{~V} / \mathrm{min}$.

$$
V(t)=V_{0}+t(2-2)=40
$$

$$
\begin{aligned}
& 4 \text { grans } / 2 \text { liters }=2 g / L \\
& -0 R- \\
& 40 \quad \frac{d A}{d t}=(4 g / c)(1 L / m)+(0 g / L)(L / m)-\frac{2}{40} A(t)
\end{aligned}
$$

$$
\frac{d A}{d t}=(2)(2)-\frac{2}{40} A(t)
$$

$$
\lim _{t \rightarrow \infty} \frac{80\left(1-e^{-t / 20}\right)}{40}=2 \mathrm{~g} / \mathrm{L}
$$

(b)

$$
\begin{gathered}
\frac{d A}{d t}+\frac{1}{20} A(t)=4 \\
S_{20}^{\frac{1}{20}} d t
\end{gathered}
$$

$$
I(t)=e^{\int \frac{1}{20} d t}=e^{\frac{t}{20}}
$$

$$
\begin{aligned}
e^{\frac{t}{20}} A(t) & =\int e^{\frac{t}{30}} 4 d t \\
& =(20)(4) e^{t / 20}+C
\end{aligned}
$$

$$
A(t)=80+\frac{c}{e^{t / 20}}
$$

$$
\begin{aligned}
& A(0)=0=80+C \\
& C=-80
\end{aligned}
$$

Answers:(a) $\frac{d A}{d t}=4-\frac{1}{20} A(t)$
(b) $29 / 6$

Page for scratchwork if needed
4. (10 points) Solve the system.

$$
\left[\begin{array}{llll|l}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \xrightarrow{x_{1}+x_{2}=1} \begin{aligned}
& x_{2}+x_{3}=1 \\
& x_{3}+x_{4}=1 \\
& R_{1}-R_{2} \\
& x_{4}=t \\
& x_{1}=1-t \\
& x_{2}=t \\
& x_{3}=1-t \\
& 0 \\
& 0 \\
& 0
\end{aligned} 1
$$

Answer:

$$
S=\{(1,0,1,0)+t(-1,1,-1,1) \mid t \in \mathbb{R}\}
$$

Page for scratchwork if needed
5. (15 points)

Suppose a square matrix A is row-equivalent to a matrix B, where

$$
B=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & -2 & 3 & -4
\end{array}\right]
$$

(a) Determine the rank of A.

$$
\begin{aligned}
& B=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 3 & 0 \\
0 & -2 & 3 & -4
\end{array}\right] \xrightarrow{\frac{1}{3} R_{3}}\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & -2 & 3 & -4
\end{array}\right] \xrightarrow{R_{4}+2 R_{2}}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{R_{4}-R_{3}}\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \text { rout } B=3 \text {, so raise } A=3
\end{aligned}
$$

(b) Is A invertible? Why or why not?

No. A 3 invertible it and only it its rank is 4 .
(c) Does there exist a \vec{b} such that $A \vec{x}=\vec{b}$ is must have infinitely-many solutions? Justify your answer. Yes. Let $\vec{b}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$. A horosereers system always sut.isties $\operatorname{rark} A=\operatorname{rank} A \#$. If $\operatorname{rark} A<$ number of variable, then the will be infinitely many solutions.
(d) Does there exist a \vec{b} such that $A \vec{x}=\vec{b}$ has a unique solution? Justify your answer. No. Since A is not invertible, $A \vec{x}=\vec{b}$ has no solutions ore Definitely - mans.
A note about the term" unique". This means that for some particular \vec{b} exactly one solution is possible. It does not refer to mlividnal soktions. For example if $A x=\overrightarrow{0}$, them $\overrightarrow{0}=(0,0,0,0)$ is a sol-ion. Butathere are infinitely-many other Solutions the the equation, so it B not unique.
6. (10 points) Write all the values of t for which the following matrix is invertible.

$$
A=\left[\begin{array}{lrr}
0 & 0 & 1 \\
t^{2} & e^{t} & 3 t^{2} \\
e^{-t} & 1 & e^{t^{2}}
\end{array}\right]
$$

Determinant Method

$$
\begin{aligned}
& \text { Determinant Method } \\
& |A|=1 \cdot\left|\begin{array}{cc}
t^{2} & e^{t} \\
e^{-t} & 1
\end{array}\right|=t^{2}-1 \text {. So if } t=1 \text { or }-1, \operatorname{det}(A)=0 \text {. }
\end{aligned}
$$

Hence A is invertible if $t \neq \pm 1$.
Row Reduction method

$$
\left.\begin{array}{c}
\text { Row Reduction method } \\
{\left[\begin{array}{ccc}
0 & 0 & 1 \\
t^{2} & e^{t} & 3 t^{2} \\
e^{-t} & 1 & e^{t^{2}}
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccc}
e^{-t} & 1 & e^{t^{2}} \\
t^{2} & e^{t} & 3 t^{2} \\
0 & 0 & 1
\end{array}\right] \xrightarrow{e^{t} R_{1}}\left[\begin{array}{ccc}
1 & e^{t} & e^{t^{2}} \\
t^{2} & e^{t} & 3 t^{2} \\
0 & 0 & 1
\end{array}\right]} \\
\\
R_{2}-t^{2} R_{1}
\end{array}\right]\left[\begin{array}{ccc}
1 & e^{t} & e^{t^{2}} \\
0 & e^{t}\left(1-t^{2}\right) & 3 t^{2}-e^{t^{2}+t} \\
0 & 0 & 1
\end{array}\right] \quad \text { if } \begin{aligned}
& e^{t}\left(1-t^{2}\right) \neq 0
\end{aligned}
$$

A is muertible if and only if $e^{t\left(1-t^{2}\right)} \neq 0$. Since $e^{t} \neq 0, A$ is invertible if $1-t^{2} \neq 0$, or $t \neq \pm 1$.
7. (15 points) Partial credit will not be offered for this problem. You do not need to justify your answer.
(a) Consider an $m \times n$ linear system withe coefficient matrix A and augmented matrix $A^{\#}$. If $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{\#}\right)$, then the system has a unique solution. There could be infinitely any solutrous.
\pm False
(b) If A and B are invertible $n \times n$ matrices, then $(A+B)^{2}$ is invertible.
\square True Consider In, - In. Both are invertible, \pm False but their sur is O_{n}.
(c) If A and B are 2×2 square matrices, then
$(A+B)^{2}=A^{2}+2 A B+B^{2}$
True
$(A+B)^{2}=A^{2}+A B+B A+B^{2}$

* False
(d) If A is an $m \times n$ matrix, and if the rank of A is n, then the first n rows of a reduced row echelon form of A is the $n \times n$ identity matrix.

(e) Suppose a linear system of m equations in n variables where $m>n$ has a coefficient matrix of rank n. Then the system has a unique solution.

True
\searrow False
The system could have no solutions.

$$
\text { Consider } \begin{aligned}
x+y & =1 \\
y & =2 \\
x+y & =3
\end{aligned}
$$

