MTH 165: Linear Algebra with Differential Equations

Final Exam
May 4, 2015

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Dummit	TR 16:50-18:05	
Friedmann	MW 16:50-18:05	
Petridis	MWF 10:25-11:15	
Rice	MW 14:00-15:15	

- You have 3 hours to work on this exam.
- No calculators, cell phones, other electronic devices, books, or notes are allowed during this exam.
- Show all your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 14 pages.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

1. (10 points) Find a solution (implicit solutions are acceptable) for the following initial value problems on the domain $(0, \infty)$:
(a) $2 y+x y^{\prime}=x^{-1}, y(1)=A$.
(b) $2 x+y y^{\prime}=x^{-1}, y(1)=B$.
2. (10 points) Find a basis for the nullspace of each matrix.
(a) $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
(b) $B=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$.
(c) $C=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$.
3. (10 points) Let $M=\left[\begin{array}{ccc}k & 0 & k \\ 0 & 1 & 0 \\ 1 & 0 & k\end{array}\right]$, where k is a parameter.
(a) Find $\operatorname{det}(M)$.
(b) Find all value(s) of k such that M is not an invertible matrix.

We continue taking $M=\left[\begin{array}{ccc}k & 0 & k \\ 0 & 1 & 0 \\ 1 & 0 & k\end{array}\right]$, where k is a parameter.
(c) Find all value(s) of k such that $\lambda=2$ is an eigenvalue of A.
4. (10 points) Determine whether each given set S is a subspace of the given vector space V. If so, give a proof; if not, explain why not.
(a) $V=\mathbb{R}^{3}$ and $S=\{(x, y, z) \in V \mid x+y=z\}$.
(b) $V=M_{2}(\mathbb{R})$, the set of 2×2 matrices, and $S=\left\{A \in V \mid A^{2}=0\right\}$.
5. (10 points) Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 2 & 2 \\
0 & 0 & 3 & 3 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

(a) Find the eigenvalues of A, and determine (with justification) whether A is a defective matrix. (In other words, determine whether \mathbb{R}^{4} has a basis consisting of eigenvectors of A.)
(b) Find the eigenvalues of A^{2}, and determine (with justification) whether A^{2} is a defective matrix. (In other words, determine whether \mathbb{R}^{4} has a basis consisting of eigenvectors of A^{2}.)
6. (10 points) Let $M_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 real matrices. Consider the linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
a+d & b-c \\
a-c & b+d
\end{array}\right]
$$

(a) Find a basis for the kernel of T, and the dimension of the kernel.

Recall that

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
a+d & b-c \\
a-c & b+d
\end{array}\right]
$$

(b) Find the dimension of the range of T.
(c) Is the identity matrix $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ in the range of T ? Justify why or why not.
7. (10 points) Find the general solution for each differential equation:
(a) $y^{\prime \prime}+4 y^{\prime}+4 y=0$.
(b) $y^{(4)}-y=0$.
(c) $y^{\prime \prime \prime}-2 y^{\prime \prime}+5 y^{\prime}=0$.
8. (10 points) Solve the equation

$$
y^{\prime \prime}+4 y=4 \cos (2 x)+8 e^{2 x}
$$

with initial conditions $y(0)=3, y^{\prime}(0)=4$.
9. (10 points) Consider a spring-mass system with spring constant $k=4 \mathrm{~N} / \mathrm{m}$ and a mass $m=1 \mathrm{~kg}$.
(a) Suppose there is no friction (or damping), and an external driving force of $6 \sin (4 t) \mathrm{N}$ is applied to the mass (in the positive direction). If at time $t=0$ the mass is at rest in the equilibrium position, find the position $y(t)$ of the mass at time t for $t \geq 0$.

Continue to consider the spring-mass system with spring constant $k=4 \mathrm{~N} / \mathrm{m}$, a mass $m=1 \mathrm{~kg}$, and an external driving force of $6 \sin (4 t) \mathrm{N}$ and no friction (or damping).
(b) What is the earliest time that the mass returns to its equilibrium position? (Hint: you may need to use the identity $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$.)
10. (10 points) Solve the system of differential equations

$$
\begin{aligned}
x_{1}^{\prime} & =2 x_{1}+2 x_{2} \\
x_{2}^{\prime} & =-x_{1}+4 x_{2}
\end{aligned}
$$

subject to the initial conditions $x_{1}(0)=1$ and $x_{2}(0)=1$.

