MTH 165

Midterm 2
04/04/2020

Name:

UR ID: \qquad

Circle your Instructor's Name:
Dan-Andrei Geba Arjun Krishnan Kalyani Madhu Ustun Yildirim

- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work or justification is given. Please record your final answers in the answer boxes.
- You are responsible for checking that this exam has all 6 problems.

HONOR PLEDGE:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE: \qquad

1. (10 points) Let A, B and $C \in M_{n \times n}(\mathbb{R})$ be such that C is an invertible matrix and $A B=C^{3}$. Show that B is an invertible matrix.
2. (10 points) Given that

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=1,
$$

find the following determinant:

$$
\operatorname{det}\left[\begin{array}{lll}
2 a+d & 2 b+e & 2 c+f \\
2 d+g & 2 e+h & 2 f+i \\
2 g+a & 2 h+b & 2 i+c
\end{array}\right]
$$

Completely justify your answer.
3. (20 points) For the following vector spaces V, determine whether or not the given set W is a subspace of V. In either case, justify your answer thoroughly.
(a) $V=\mathbb{R}^{4}$ and $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V \mid x_{1}+x_{2}=x_{3}+x_{4}\right\} ;$
(b) $V=P_{4}(\mathbb{R})$ (i.e., the vector space of polynomials with real coefficients, having degree at most equal to 4) and $W=\{p \in V \mid p(1) p(2)=2 p(3)\}$.
4. (10 points) Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right], \quad \text { and } \quad A_{3}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Determine whether $A \in \operatorname{span}\left\{A_{1}, A_{2}, A_{3}\right\}$ or not. If so, express A as a linear combination of A_{1}, A_{2}, and A_{3}. Otherwise, explain why this is not possible.
5. (10 points) Let $V=M_{3 \times 2}(\mathbb{R})$ and consider the subspace

$$
W=\left\{A \in V \mid a_{11}+a_{22}=3 a_{12}+2 a_{32}\right\} .
$$

Find a spanning set for W. Completely justify your answer.
6. (10 points) Is the set of polynomials

$$
\left\{x^{3}-x, 2 x^{2}+4,-2 x^{3}+3 x^{2}+2 x+6\right\} \subseteq P_{3}(\mathbb{R})
$$

linearly independent? If so, justify why; if not, find an explicit linear dependence.

1. (10 points) Let A, B and $C \in M_{n \times n}(\mathbb{R})$ be such that C is an invertible matrix and $A B=C^{3}$. Show that B is an invertible matrix.

Suppose B is not mertible. Then $\operatorname{det} B=0$, so $\operatorname{det} A B$ $=(\operatorname{let} A)(\operatorname{det} B)=0$. Since C is invertible, $\quad \operatorname{det}(C)=k \neq 0$.
So $\operatorname{det}\left(\left({ }^{3}\right)=(\operatorname{det}(C))^{3}=k^{3}\right.$. Hence, if $B 5$ not invertible, $O=k^{3}$. Ten B most be invertible.
2. (10 points) Given that

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=1
$$

find the following determinant:

$$
\operatorname{det}\left[\begin{array}{lll}
2 a+d & 2 b+e & 2 c+f \\
2 d+g & 2 e+h & 2 f+i \\
2 g+a & 2 h+b & 2 i+c
\end{array}\right]
$$

Set $B=$ this maxis.

Completely justify your answer.

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{ccc}
2 a & 2 b & 2 c \\
2 d+g & 2 e t h & 2 f+i \\
2 g+a & 2 b+b & 2 i+c
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
d & e & f \\
2 d+g & 2 e+h & 2 f+i \\
2 g+a & 2 h+b & 7 i+c
\end{array}\right) \\
& =\left(R_{3}-\frac{1}{2} R_{1}\right)\left(\begin{array}{ccc}
2 a & 2 b & 2 c \\
2 d+g & 2 c+h & 2 f+i \\
2 g & 2 h & 2 i
\end{array}\right)+\left(R_{2}-2 R_{1}\right)\left(\begin{array}{ccc}
d & e & f \\
g & h & c \\
\operatorname{det} & 2 h+b & 2 i+c
\end{array}\right) \\
& =\left(R_{2}-\frac{1}{2} R_{3}\right)\left(\begin{array}{ccc}
2 a & 2 b & 2 c \\
2 d & 2 e & 2 f \\
2 g & 2 h & 2 i
\end{array}\right)+R_{3}-2 R_{2}\left(\begin{array}{ccc}
d & e & f \\
g & h & i \\
a & b & c
\end{array}\right) \\
& =2^{3} \operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)-\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
g & h & i \\
d & e & f
\end{array}\right) \\
& =8 \operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)+\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & c
\end{array}\right) \\
& =9
\end{aligned}
$$

3. (20 points) For the following vector spaces V, determine whether or not the given set W is a subspace of V. In either case, justify your answer thoroughly.
(a) $V=\mathbb{R}^{4}$ and $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V \mid x_{1}+x_{2}=x_{3}+x_{4}\right\} ;$
(b) $V=P_{4}(\mathbb{R})$ (i.e., the vector space of polynomials with real coefficients, having degree at most equal to 4) and $W=\{p \in V \mid p(1) p(2)=2 p(3)\}$.
(a). W is a subspace.
(1) $(0,0,0,0)$ satisfies $x_{1}+x_{2}=0=x_{3}+x_{11}$.
(2) Suppose $a b \in W$. let $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ ad $b=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$. Thin $a+b=\left(a_{1}+b_{1} a_{2}+b_{2}, a_{3}+b_{3}, a_{4}+b_{4}\right)$.
Now $\left(a_{1}+b_{2}\right)+\left(a_{2}+b_{2}\right)=a_{1}+a_{2}+b_{1}+b_{2}$

$$
\begin{aligned}
& =a_{3}+a_{4}+b_{3}+b_{4}, \text { be use } a_{1} b \in w . \\
& =\left(a_{3}+b_{3}\right)+\left(a_{4}+b_{4}\right) .
\end{aligned}
$$

So $a+b \in \omega$.
(3) Let $\lambda \in \mathbb{R}$ al $a=\left(a_{1}, a_{2}, a_{3}, a_{y}\right) \in W$.

$$
\text { ter } \begin{aligned}
\lambda a & =\left(\lambda a_{1}, \lambda a_{2}, \lambda a_{3}, \lambda a_{4}\right) . \\
\lambda a_{1}+\lambda a_{2} & =\lambda\left(a_{1}+a_{2}\right) \\
& =\lambda\left(a_{3}+a_{4}\right) \text { be carse } a \in W \\
& =\lambda a_{3}+\lambda a_{4} .
\end{aligned}
$$

So $\lambda a \in W$.
Since ω is non-e-pts, and closet under vector addition and scalar multiplication, it is a schspace.
(b) W is not a subspace.

$$
\{p \in V \mid p(1) p(2)=2 p(3)\}
$$

Note teat $p(x)=2$, ta constant function,
Sutisties $p(1) \rho(2)=(2)(2)=2 p(3)$.
But $(3 p)(x)$ satistics $(6)(6)=36$,
whenas $2(3 p(x))=12$.
So w is not closed under scalar mitr.plication.
4. (10 points) Let

We get a matrix equation:

$$
\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 2 & -1 & 0
\end{array}\right] \xrightarrow[R_{r}-R_{1}]{R_{2}-R_{1}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & -1 & -1 & -1 \\
0 & 1 & 0 & 1 \\
0 & 1 & -1 & -1
\end{array}\right] \xrightarrow{R_{3}+R_{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & -1 & -1 & -1 \\
0 & 0 & -1 & 0 \\
0 & 0 & -2 & -2
\end{array}\right] \xrightarrow{R_{4}+R_{2}+2 R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 0 & 1 \\
0 & -1 & -1 & -1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -2
\end{array}\right] \begin{aligned}
& \text { This so stem } \\
& \text { is inconsistent. } \\
& \text { So } \\
& \text { S in wot } \\
& \text { in ten soon of }
\end{aligned}
$$

5. (10 points) Let $V=M_{3 \times 2}(\mathbb{R})$ and consider the subspace

$$
W=\left\{A \in V \mid a_{11}+a_{22}=3 a_{12}+2 a_{32}\right\} .
$$

Find a spanning set for W. Completely justify your answer.

If $A \in w$, then $a_{11}=3 a_{12}+2 a_{32}-a_{22}$.

$$
\begin{gathered}
\left.A=\left[\begin{array}{cc}
3 a_{12}+2 a_{32}-a_{22} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] . \begin{array}{c}
\text { Seftrg each porantr } a_{12}, a \\
\text { to one while settis fen } \\
\text { in torn, we get th follor } \\
\beta
\end{array} \quad\left\{\begin{array}{ll}
3 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
2 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
10
\end{array}\right]\right\}
\end{gathered}
$$

- Seftrg each porante $a_{12}, a_{21}, a_{22}, a_{31}, a_{32}$ to one while setting fen others to z bro in torn, we get the following spiny set:

6. (10 points) Is the set of polynomials

$$
\left\{x^{3}-x, 2 x^{2}+4,-2 x^{3}+3 x^{2}+2 x+6\right\} \subseteq P_{3}(\mathbb{R})
$$

linearly independent? If so, justify why; if not, find an explicit linear dependence.

$$
\text { Supp ore } a\left(x^{3}-x\right)+b\left(2 x^{2}+4\right)+c\left(-2 x^{3}+3 x^{2}+2 x+6\right)=0
$$

We get a system of equations:

$$
\begin{aligned}
a-2 c & =0 \\
2 b+3 c & =0 \\
-a+2 c & =0 \\
4 b+6 c & =0
\end{aligned} \quad \text { wite Matrix equation }\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 2 & 3 & 0 \\
-1 & 0 & 2 & 0 \\
0 & 4 & 6 & 0
\end{array}\right]
$$

$$
\xrightarrow{R_{3}+R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & -2 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- Since the varlc $=2<3=\#$ of columns, Th. 3 system has a nonzero solution. Hence the polyromids are not inbpendut.

We get $a=2 c$ cal $2 b=-3 c$. We can let $c=2, a=4$ al $b=-3$. Thu

$$
4\left(x^{3}-x\right)-3\left(2 x^{2}+4\right)+2\left(-2 x^{3}+3 x^{2}+2 x+6\right)=0
$$

