MTH 165

Midterm 2
04/04/2020

Name: \qquad

UR ID: \qquad

Circle your Instructor's Name:
Dan-Andrei Geba Arjun Krishnan Kalyani Madhu Ustun Yildirim

- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work or justification is given. Please record your final answers in the answer boxes.
- You are responsible for checking that this exam has all 6 problems.

HONOR PLEDGE :

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE: \qquad

1. (10 points) Let A, B and $C \in M_{n \times n}(\mathbb{R})$ be such that C is an invertible matrix and $A B=C^{3}$. Show that B is an invertible matrix.
2. (10 points) Given that

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=1
$$

find the following determinant:

$$
\operatorname{det}\left[\begin{array}{ccc}
2 a+d & 2 b+e & 2 c+f \\
2 d+g & 2 e+h & 2 f+i \\
2 g+a & 2 h+b & 2 i+c
\end{array}\right]
$$

Completely justify your answer.
3. (20 points) For the following vector spaces V, determine whether or not the given set W is a subspace of V. In either case, justify your answer thoroughly.
(a) $V=\mathbb{R}^{4}$ and $W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in V \mid x_{1}+x_{2}=x_{3}+x_{4}\right\} ;$
(b) $V=P_{4}(\mathbb{R})$ (i.e., the vector space of polynomials with real coefficients, having degree at most equal to 4) and $W=\{p \in V \mid p(1) p(2)=2 p(3)\}$.
4. (10 points) Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad A_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right], \quad \text { and } \quad A_{3}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Determine whether $A \in \operatorname{span}\left\{A_{1}, A_{2}, A_{3}\right\}$ or not. If so, express A as a linear combination of A_{1}, A_{2}, and A_{3}. Otherwise, explain why this is not possible.
5. (10 points) Let $V=M_{3 \times 2}(\mathbb{R})$ and consider the subspace

$$
W=\left\{A \in V \mid a_{11}+a_{22}=3 a_{12}+2 a_{32}\right\} .
$$

Find a spanning set for W. Completely justify your answer.
6. (10 points) Is the set of polynomials

$$
\left\{x^{3}-x, 2 x^{2}+4,-2 x^{3}+3 x^{2}+2 x+6\right\} \subseteq P_{3}(\mathbb{R})
$$

linearly independent? If so, justify why; if not, find an explicit linear dependence.

