Midterm 1, MTH 165, Spring 2020

1. An object whose temperature is $615^{\circ} \mathrm{F}$ is placed in a room whose temperature is $75^{\circ} \mathrm{F}$. At 4 p.m., the temperature of the object is $135^{\circ} \mathrm{F}$, and an hour later its temperature is $95^{\circ} \mathrm{F}$. It is assumed that the temperature of the object $T=T(t)$ varies according to Newton's law of cooling, i.e.,

$$
\frac{d T}{d t}=-k\left(T-T_{m}\right)
$$

where T_{m} is the temperature of the surrounding medium and k is a positive constant. Under these assumptions, find the time at which the object was placed in the room.
2. Find the general solution of the differential equation

$$
x y^{\prime \prime}-y^{\prime}=4 x^{3} .
$$

(Hint: You may find useful letting $v=y^{\prime}$ and rewriting the equation solely in terms of v.)
3. A 450 -gal tank initially contains 50 gal of pure water. Brine enters the tank through two faucets: one containing $0.2 \mathrm{lb} / \mathrm{gal}$ of salt flows in at the rate of $3 \mathrm{gal} / \mathrm{min}$, while the second one containing $0.6 \mathrm{lb} / \mathrm{gal}$ of salt flows in at the rate of $5 \mathrm{gal} / \mathrm{min}$. The well-stirred mixture flows out of the tank at the rate of $4 \mathrm{gal} / \mathrm{min}$. How much salt is in the tank just before the solution overflows?
4. We recall that a square matrix C is symmetric if $C=C^{T}$, where C^{T} denotes its transpose. Using properties of the transpose and the above definition, show that $A A^{T}$ is a symmetric matrix if A is an arbitrary, not necessarily square matrix.
5. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 4 & 2 & 2 \\
4 & 4 & 4 & 8 & 0 \\
8 & 2 & 0 & 10 & 2 \\
6 & 3 & 2 & 9 & 1
\end{array}\right]
$$

(a) By performing elementary row operations, determine its reduced row-echelon form. Indicate which row operations are used in each step.
(b) Find the rank of matrix A and explain your answer.
6. Use Gauss-Jordan elimination to solve the system

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}+3 x_{3}-2 x_{4}=1 \\
x_{1}+x_{2}+x_{3}=3 \\
x_{1}+2 x_{2}+x_{3}-x_{4}=2
\end{array}\right.
$$

