Midterm 1, MTH 165, Spring 2020

1. An object whose temperature is $615^{\circ} \mathrm{F}$ is placed in a room whose temperature is $75^{\circ} \mathrm{F}$. At $4 \mathrm{p} . \mathrm{m}$., the temperature of the object is $135^{\circ} \mathrm{F}$, and an hour later its temperature is $95^{\circ} \mathrm{F}$. It is assumed that the temperature of the object $T=T(t)$ varies according to Newton's law of cooling, i.e.,

$$
\frac{d T}{d t}=-k\left(T-T_{m}\right)
$$

where T_{m} is the temperature of the surrounding medium and k is a positive constant. Under these assumptions, find the time at which the object was placed in the room.
2. Find the general solution of the differential equation

$$
x y^{\prime \prime}-y^{\prime}=4 x^{3} .
$$

(Hint: You may find useful letting $v=y^{\prime}$ and rewriting the equation solely in terms of v.)
3. A 450 -gal tank initially contains 50 gal of pure water. Brine enters the tank through two faucets: one containing $0.2 \mathrm{lb} / \mathrm{gal}$ of salt flows in at the rate of $3 \mathrm{gal} / \mathrm{min}$, while the second one containing $0.6 \mathrm{lb} / \mathrm{gal}$ of salt flows in at the rate of $5 \mathrm{gal} / \mathrm{min}$. The well-stirred mixture flows out of the tank at the rate of $4 \mathrm{gal} / \mathrm{min}$. How much salt is in the tank just before the solution overflows?
4. We recall that a square matrix C is symmetric if $C=C^{T}$, where C^{T} denotes its transpose. Using properties of the transpose and the above definition, show that $A A^{T}$ is a symmetric matrix if A is an arbitrary, not necessarily square matrix.
5. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 4 & 2 & 2 \\
4 & 4 & 4 & 8 & 0 \\
8 & 2 & 0 & 10 & 2 \\
6 & 3 & 2 & 9 & 1
\end{array}\right]
$$

(a) By performing elementary row operations, determine its reduced row-echelon form. Indicate which row operations are used in each step.
(b) Find the rank of matrix A and explain your answer.
6. Use Gauss-Jordan elimination to solve the system

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}+3 x_{3}-2 x_{4}=1 \\
x_{1}+x_{2}+x_{3}=3 \\
x_{1}+2 x_{2}+x_{3}-x_{4}=2
\end{array}\right.
$$

solutions

1. An object whose temperature is $615^{\circ} \mathrm{F}$ is placed in a room whose temperature is $75^{\circ} \mathrm{F}$. At $4 \mathrm{p} . \mathrm{m}$., the temperature of the object is $135^{\circ} \mathrm{F}$, and an hour later its temperature is $95^{\circ} \mathrm{F}$. It is assumed that the temperature of the object $T=T(t)$ varies according to Newton's law of cooling, ie.,

$$
\frac{d T}{d t}=-k\left(T-T_{m}\right)
$$

where T_{m} is the temperature of the surrounding medium and k is a positive constant. Under these assumptions, find the time at which the object was placed in the room.

$$
\begin{aligned}
& \int \frac{d T}{T-T_{m}}=\int-K d t+C \\
& \ln \left|T-T_{m}\right|=-k t+C \\
& T-T_{M}=c e^{-k t} \\
& T=T_{m}+C e^{-k t} \quad T\left(t_{0}\right)=615
\end{aligned}
$$

what is to?

$$
\begin{aligned}
& T=75+c e^{-k t} \\
& 135=75+c e^{-4 k} \rightarrow 65=c e^{-4 k} \\
& \left.95=75+c e^{-5 k} \rightarrow 20=c e^{-5 k}\right) \\
& 20=65 e^{-k} k \\
& \ln \left(\frac{13}{4}\right)=\ln \left(\frac{65}{20}\right)=k \\
& 20=c e^{-5 k}=c e^{-5 \ln \left(\frac{13}{4}\right)} \\
& =c\left(\frac{4}{13}\right)^{5} \\
& \rightarrow C=20\left(\frac{18}{4}\right)^{5}
\end{aligned}
$$

$$
\begin{aligned}
& T(t)= 75+c e^{-k t} \\
&= 75+20\left(\frac{13}{4}\right)^{5} e^{-t \ln \left(\frac{13}{4}\right)} \\
&= 75+20\left(\frac{13}{4}\right)^{5}\left(\frac{4}{13}\right)^{t} \\
&= 75+20\left(\frac{13}{4}\right)^{5-t} \\
& 615= t\left(t_{0}\right)=75+20\left(\frac{13}{4}\right)^{5-t_{0}} \\
& 540=20\left(\frac{13}{4}\right)^{5-t_{0}} \\
& 27=\left(\frac{13}{4}\right)^{5-t_{0}} \\
& \ln (27)=\left(5-t_{0}\right) \ln \left(\frac{13}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\ln (27)}{\ln (3 / 4)} & =5-t_{a} \\
t_{\alpha} & =5-\frac{\ln (27)}{\ln \left(\frac{13}{4}\right)}
\end{aligned}
$$

2. Find the general solution of the differential equation

$$
x y^{\prime \prime}-y^{\prime}=4 x^{3} .
$$

$$
\text { Let } z(x)=z=y^{\prime}
$$

Then $x z^{\prime}-z=4 x^{3}$

$$
\begin{aligned}
& x z^{\prime}-z=4 x^{3} \\
& z^{\prime}-\frac{1}{x} z=4 x^{2} \quad(x \neq 0) \\
& P(x)=-\frac{1}{x} \quad q(x)=4 x^{2} \\
& I(x)=e^{\int \rho(x) d x} \\
&=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
z \frac{1}{x} & =\int \frac{1}{x}\left(4 x^{2}\right) d x+c \\
& =x\left(\int 4 x d x+c\right) \\
& =4 x^{2}+c x \\
\rightarrow y^{\prime} & =4 x^{2}+c x \\
y & =\frac{4}{3} x^{3}+c_{1} \frac{x^{2}}{2}+c_{2}
\end{aligned}
$$

3. A 450-gal tank initially contains 50 gal of pure water. Brine enters the tank through two faucets: one containing $0.2 \mathrm{lb} /$ gal of salt flows in at the rate of $3 \mathrm{gal} / \mathrm{min}$, while the second one containing $0.6 \mathrm{lb} / \mathrm{gal} \mathrm{clf}_{\mathrm{of}}$ salt flows in at the rate of $5 \mathrm{gal} / \mathrm{min}$. The well-stirred mixture flows out of the tarkat the rate of $4 \mathrm{gal} / \mathrm{min}$. How much sat is in the tank just before the solution overflows?

$$
\begin{aligned}
\text { flow fate }=\frac{d V}{d t} & =\left(f_{1}+f_{2}-f_{3}\right) \\
V(t) & =\left(f_{1}+f_{2}-\delta_{3}\right) t+50 \\
& =4 t+50
\end{aligned}
$$

Tank full when $t=100$ min

$$
\begin{aligned}
\frac{d s}{d t} & =c_{1} c_{1}+\delta_{2} c_{2}-\delta_{3} \frac{S}{V} \\
& =0.6+3-\left(\frac{4}{4 t+50}\right) s
\end{aligned}
$$

$$
\begin{aligned}
& \left.s^{1}+\left(\frac{4}{4 t+50}\right)=3.6\right] \begin{array}{c}
\text { istoifler } \\
\begin{array}{c}
\text { inend } \\
D E
\end{array}
\end{array} \\
& 1(t)=e^{\int \frac{4}{4 t+50} d t}=4 t+5 D \\
& s=\frac{1}{4 t+50}\left(\int(4 t+50) 3.6 d t+C\right) \\
& =\frac{3.0}{8} \frac{(4 t+50)^{2}}{(4 t+50)}+\frac{L}{4 t+50} \\
& =0.4(4 t+50)+\frac{C}{4 t+50} \\
& \underset{\substack{\text { gencecal } \\
\text { colution }}}{ }\left[=1.6 t+20+\frac{c}{4 t+50}\right.
\end{aligned}
$$

$$
\begin{aligned}
& S(0)=0=20+\frac{C}{50} \\
& C=-1000 \\
& \underset{\text { Soluticurar }}{\operatorname{Pal}} \tilde{L}(t)=1.6 t+20-\frac{1000}{4 t+50} \\
& \underset{\text { of sat }}{\operatorname{amonat}}\left[S(100)=160+20-\frac{1000}{450}\right. \\
& \text { wher } \\
& \text { tarkisfull } \\
& =180-\frac{20}{9} 16 .
\end{aligned}
$$

fore the solution overflows'?
4. We recall that a square matrix C is symmetric if $C=C^{T}$, where C^{T} denotes its anspose. Using properties of the transpose and the above definition, show that $A A^{T}$ is a metric matrix if A is an arbitrary, not necessarily square matrix.

$$
\begin{aligned}
\left(A A^{\top}\right)^{\top}= & \left(A^{\top}\right)^{\top} A^{\top} \\
& \rightarrow A A^{\top} \\
& \rightarrow A A^{\top} \text { is symmetric }
\end{aligned}
$$

5. Consider the matrix

$$
A=\left[\begin{array}{ccccc}
0 & 2 & 4 & 2 & 2 \\
4 & 4 & 4 & 8 & 0 \\
8 & 2 & 0 & 10 & 2 \\
6 & 3 & 2 & 9 & 1
\end{array}\right]
$$

(a) By performing elementary row operations, determine its reduced row-ech Indicate which row operations are used in each step.
(b) Find the rank of matrix A and explain your answer.

$$
\begin{aligned}
& \frac{1}{4} R_{2} \rightarrow R_{2} \\
& \frac{1}{2} R_{1} \rightarrow R_{1} \\
& \frac{1}{2} R_{3} \rightarrow R_{3}
\end{aligned} \quad\left[\begin{array}{lllll}
0 & 1 & 2 & 1 & 1 \\
1 & 1 & 1 & 2 & a \\
4 & 1 & 0 & 5 & 1 \\
6 & 3 & 2 & 9 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \substack{R_{1} \rightarrow R_{2} \\
R_{2} \rightarrow R_{1}} \\
& \xrightarrow{-4} R_{1}+R_{3} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{ccccc}
1 & 1 & 1 & 2 & 0 \\
0 & 1 & 2 & 1 & 1 \\
4 & 1 & 0 & 5 & 1 \\
6 & 3 & 2 & 9 & 1
\end{array}\right]
$$

$$
\begin{aligned}
-R_{3}+R_{4} \rightarrow R_{4} & {\left[\begin{array}{ccccc}
1 & 1 & 1 & 2 & 0 \\
0 & 1 & 2 & 1 & 1 \\
0 & -3 & -4 & -3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] } \\
& \xrightarrow{-R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & -1 \\
0 & R_{2}+R_{3} \rightarrow R_{3} & 1 & 2 & 1 \\
1 \\
0 & 0 & 2 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2} R_{3} \rightarrow R_{3}\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & -1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 2 \\
w & 0 & 0 & 0 & 0
\end{array}\right] R R_{E F} \\
& \xrightarrow{R_{1}+R_{3} \rightarrow R_{1}} \begin{array}{l}
-R_{3}+R_{2} \rightarrow R_{2}\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 2 \\
9 & 0 & 0 & 0 & 0
\end{array}\right] \text { RREF } \\
R_{a n k}(A)
\end{array}=3 \text { sicce RREFORA }
\end{aligned}
$$

has 3 leading ones.
6. Use Gauss-Jordan elimination to solve the system

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}+3 x_{3}-2 x_{4}=1 \\
x_{1}+x_{2}+x_{3}=3 \\
x_{1}+2 x_{2}+x_{3}-x_{4}=2
\end{array}\right.
$$

$$
\begin{array}{r}
\substack{R_{3 \rightarrow R_{1}}^{R_{1} \rightarrow R_{3}}}
\end{array}\left[\begin{array}{cccc|c}
1 & 2 & 3 & -2 & 1 \\
1 & 1 & 1 & 0 & 3 \\
1 & 2 & 1 & -1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\substack{-R_{1}+R_{2} \rightarrow R_{2} \\
\rightarrow 3 R_{1}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{cccc|c}
1 & 2 & 1 & -1 & 2 \\
0 & -1 & 0 & 1 & 1 \\
0 & -4 & 0 & 1 & -5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{-R_{2} \rightarrow R_{2}} \begin{array}{l}
-\frac{1}{3} R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{cccc|c}
1 & 0 & 1 & 1 & 4 \\
\alpha & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& x_{4}=3 \\
& x_{2}=2 \\
& x_{1}+x_{3}=1 \\
& x_{3}=5 \text { varialle } \\
& S=\{(1-5,2,5,3) \mid s \in Q\} \\
& =\{(1,2,0,3)+s(-1,01,0) \mid s \in \mathbb{R}\}
\end{aligned}
$$

