Midterm 1, MTH 165, Spring 2019

1. Find the equation of the curve that passes through the point $(0,1 / 2)$ and whose slope at each point (x, y) is $-\frac{x}{4 y}$.
2. Find the general solution of the differential equation

$$
1-y \sin x-\cos x \frac{d y}{d x}=0
$$

3. A tank initially contains 10 L of a salt solution. Water flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$, and the well-stirred mixture flows out at a rate of $2 \mathrm{~L} / \mathrm{min}$. After 5 minutes, the concentration of salt in the tank is $0.2 \mathrm{~g} / \mathrm{L}$. Find:
(a) The amount of salt in the tank initially;
(b) The volume of the solution in the tank when the concentration of salt is $0.025 \mathrm{~g} / \mathrm{L}$.
4. Consider the matrix

$$
A=\left[\begin{array}{cccc}
3 & -2 & -1 & 17 \\
2 & 2 & -4 & 8 \\
-1 & 4 & -3 & 1
\end{array}\right]
$$

(a) By performing elementary row operations, determine its reduced row-echelon form. Indicate which row operations are used in each step.
(b) Find the rank of matrix A and explain your answer.
5. Consider the system

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}-x_{3}+x_{4}=0 \\
x_{1}+x_{2}+x_{3}-x_{4}=0 \\
4 x_{1}+2 x_{2}-x_{3}+x_{4}=0 \\
3 x_{1}-x_{2}+x_{3}+c x_{4}=0
\end{array}\right.
$$

(a) Find all values of the constant c for which the system is consistent.
(b) For the case when the system is consistent, use Gaussian (or Gauss-Jordan) elimination to determine the solution set.
6. Consider the differential equation

$$
y^{\prime}=y^{2}(y-1)
$$

(a) Find all of its equilibrium solutions.
(b) Determine the regions in the $x y$-plane where the solutions are increasing.
(c) Determine the regions in the $x y$-plane where the solution curves are concave up.

