MTH 165: Linear Algebra with Differential Equations

Midterm 1

October 13, 2016

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Bobkova	MWF 10:25-11:15	
Lubkin	MWF 9:00-9:50	
Rice	TR 14:00-15:15	
Vidaurre	MW 14:00-15:15	

- You have 75 minutes to work on this exam.
- No calculators, cell phones, other electronic devices, books, or notes are allowed during this exam.
- Show all your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 7 pages.

QUESTION	VALUE	SCORE
1	15	
2	15	
3	20	
4	20	
5	15	
6	15	
TOTAL	100	

1. (15 points) Solve the following initial value problem in explicit form.

$$
e^{-x} \frac{d y}{d x}=\frac{6 x^{2} e^{x^{3}}+2 e^{x^{3}}}{y}, \quad y(0)=-2 .
$$

2. (15 points) Find the general solution to the following differential equation.

$$
\left(t^{2}+1\right) y^{\prime}+6 t y=30 t\left(t^{2}+1\right)^{2}
$$

3. (20 points) Suppose a tank with a 40 L capacity is initially filled with 10 L of water in which 50 g of salt is dissolved. A $3 \mathrm{~g} / \mathrm{L}$ solution is poured into the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$, while well-mixed solution is drained from the tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.
(a) How long does it take for the concentration of the solution in the tank to reach $4 \mathrm{~g} / \mathrm{L}$?
(b) What is the concentration of the solution in the tank at the moment the tank begins to overflow?
4. (20 points) Consider the following system of equations, where x, y, z are the variables and k is a real constant.

$$
\begin{gathered}
x+4 y+5 z=1 \\
3 x-y+z=4 \\
13 y+k z=2
\end{gathered}
$$

(a) Determine which values of k cause the system to have one solution, no solutions, and infinitely many solutions, respectively.
(b) Solve the system with $k=17$.
5. (15 points) Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
2 & 5 & 7
\end{array}\right]
$$

(a) Find A^{-1}, or conclude that it does not exist.
(b) Find the matrix B that satisfies

$$
B A-\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 4 & 6 \\
1 & 3 & 5
\end{array}\right]=2\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & -1 & -3 \\
-1 & 0 & -1
\end{array}\right]
$$

6. (15 points) Let $A=\left[\begin{array}{lll}3 & 7 & 1 \\ 0 & 5 & 2 \\ 3 & k & 5\end{array}\right]$, where k is a real number.
(a) Compute $\operatorname{det}(A)$ in terms of k.
(b) Determine all possible values of $\operatorname{rank}(A)$, along with which values of k cause those values to occur.
