MTH 165: Linear Algebra with Differential Equations

Final Exam

December 17, 2016

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Bobkova	MWF 10:25-11:15	
Lubkin	MWF 9:00-9:50	
Rice	TR 14:00-15:15	
Vidaurre	MW 14:00-15:15	

- You have 180 minutes to work on this exam.
- No calculators, cell phones, other electronic devices, books, or notes are allowed during this exam.
- Show all your work and justify your answers, even if the answer is just a number or "yes/no" or "true/false". You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 13 pages.

QUESTION	VALUE	SCORE
1	20	
2	36	
3	24	
4	36	
5	36	
6	24	
7	24	
TOTAL	200	

1. (20 points) Solve the following initial value problems in explicit form.
(a) $y^{\prime}=4 e^{2 x-y}, y(0)=0$
(b) $y^{\prime}=4 e^{2 x}-y, y(0)=0$
2. (36 points) Determine if the following statements are true or false.
(a) The polynomials $p_{1}(x)=1, p_{2}(x)=x^{2}+x, p_{3}(x)=2+5 x$, and $p_{4}(x)=x^{2}-1$ are linearly independent vectors in $P_{2}(\mathbb{R})$, the space of polynomials of degree at most 2 .
(b) The vectors $\left[\begin{array}{l}1 \\ 7 \\ 2\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]$ form a basis for \mathbb{R}^{3}.
(c) The set $S=\{(x, y): x+y \geq 0\}$ is a subspace of \mathbb{R}^{2}.
(d) The transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by $T\left(\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]\right)=\left[\begin{array}{c}a+b \\ c+d \\ a b \\ c d\end{array}\right]$ is linear.
3. (24 points) Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & 3 & -5 \\
0 & 2 & -3
\end{array}\right]
$$

(a) Determine all eigenvalues of A.
(b) If A^{-1} exists, compute it. If A^{-1} does not exist, explain why not.
4. (36 points) Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 3 & 5 & 7 \\
3 & 6 & 9 & 16 & 22 \\
5 & 10 & 15 & 26 & 36
\end{array}\right]
$$

and suppose the function $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is defined by $T(\mathbf{x})=A \mathbf{x}$.
(a) Determine a row-echelon form of A.
(b) Determine a basis for the range (also known as the image) of T.
(c) What is the dimension of the kernel of T ?
(d) Are the rows of A linearly independent?

5. (36 points)

(a) Find the general real-valued solution to the differential equation

$$
y^{(4)}-25 y^{\prime \prime}=0 .
$$

(b) Find a particular real-valued solution to the differential equation

$$
y^{\prime \prime}+9 y=30 e^{x} .
$$

(c) Find a particular real-valued solution to the differential equation

$$
y^{\prime \prime}+9 y=12 \sin (3 x) .
$$

(d) Solve the initial value problem

$$
y^{\prime \prime}+9 y=30 e^{x}+12 \sin (3 x), \quad y(0)=4, y^{\prime}(0)=3
$$

6. (24 points) Consider a spring-mass system with spring constant $k=4 \mathrm{~N} / \mathrm{m}$, and a mass $m=1 \mathrm{~kg}$, which is hung from the spring and allowed to reach equilibrium. Determine the following about the position function y of the mass, relative to equilibrium, where the positive direction is downward.
(a) If the medium has damping constant $c=4$, no external force is acting on the system, and the mass is stretched 1 m past equilibrium and released, find a formula for y.
(b) If there is no damping force, and an external force of $F(t)=\sin (t)$ acts on the system, describe all possible formulas (i.e. give the general real-valued solution) for y.

7. (24 points)

(a) Solve the following initial value problem.

$$
\begin{gathered}
x^{\prime}=2 x+y \\
y^{\prime}=2 x+3 y \\
x(0)=1, y(0)=2 .
\end{gathered}
$$

(b) Find the general, real-valued solution to the following system of equations.

$$
\begin{aligned}
& x^{\prime}=3 x+2 y \\
& y^{\prime}=-x+y .
\end{aligned}
$$

