MTH 165: Linear Algebra with Differential Equations Final Exam ANSWERS

December 21, 2014

1. (10 points) Solve the following initial value problems on $[1, \infty)$.
(a) $x y y^{\prime}=x+2 ; y(1)=4$.

Answer:

The equation is not linear, so we must separate variables.

$$
y d y=\frac{x+2}{x} d x=\left(1+\frac{2}{x}\right) d x
$$

Integrating gives

$$
\frac{y^{2}}{2}=\int y d y=\int\left(1+\frac{2}{x}\right) d x=x+2 \ln (|x|)+C=x+2 \ln (x)+C .
$$

Setting $x=1$ gives

$$
8=\frac{4^{2}}{2}=1+2 \cdot 0+C \Longrightarrow C=7
$$

So y is the positive square root of $2 x+4 \ln (x)+14$.
Answer: $y=\underline{\sqrt{2 x+4 \ln (x)+14}}$.
(b) $\frac{y^{\prime}}{x^{3}}+4 y-1=0 ; y(1)=2$.

Answer:

The equation is both linear and separable. We write it in the standard form

$$
y^{\prime}+4 x^{3} y=x^{3}
$$

and multiply both sides by the integrating factor

$$
I=e^{\int 4 x^{3} d x}=e^{x^{4}}
$$

This gives

$$
\left[e^{x^{4}} y\right]^{\prime}=x^{3} e^{x^{4}} \Longrightarrow e^{x^{4}} y=\int x^{3} e^{x^{4}} d x \stackrel{u=x^{4}}{=} \frac{e^{x^{4}}}{4}+C
$$

Setting $x=1$ gives

$$
e \cdot 2=\frac{e}{4}+C \Longrightarrow C=\frac{7 e}{4} .
$$

Answer: $y=\underline{\frac{1}{4}}+\frac{7 e}{4} e^{-x^{4}}$.
2. (10 points) Consider the matrix $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 4 & 1 \\ 2 & 5 & 0\end{array}\right]$.
(a) Compute the determinant of A.

Answer:

Expanding along the third column gives: $-1(1 \cdot 5-2 \cdot 2)=-1$.
Answer: $\operatorname{det}(A)=\underline{-1}$.
(b) Find A^{-1}.

Answer:

Following the standard algorithm gives
Answer: $A^{-1}=\underline{\left[\begin{array}{ccc}5 & 0 & -2 \\ -2 & 0 & 1 \\ -2 & 1 & 0\end{array}\right] . ~}$
(c) Use your answer to part (b) to solve the following system of equations:

$$
\begin{aligned}
x+2 y & =1 \\
2 x+4 y+z & =4 \\
2 x+5 y & =-3
\end{aligned}
$$

Answer:

Applying the usual formula $A \mathbf{x}=\mathbf{b} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}$ gives

$$
\mathbf{x}=\left[\begin{array}{ccc}
5 & 0 & -2 \\
-2 & 0 & 1 \\
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right]=\left[\begin{array}{c}
11 \\
-5 \\
2
\end{array}\right]
$$

Answer: $(x, y, z)=\underline{(11,-5,2)}$.
3. (10 points) Let $\mathbf{r}_{1}, \mathbf{r}_{2} \in \mathbb{R}^{3}$ be two row vectors, and let $k \in \mathbb{R}$ be a real number. For which values of k, if any, is the matrix

$$
A=\left[\begin{array}{c}
\mathbf{r}_{2}+k \mathbf{r}_{1} \\
\mathbf{r}_{1}-\mathbf{r}_{2} \\
\mathbf{r}_{1}+\mathbf{r}_{2}
\end{array}\right]
$$

invertible? Justify your answer.

Answer:

One of the ways to answer this question is to recall that

$$
A \text { is invertible } \Longleftrightarrow \operatorname{rank}(A)=3 \Longleftrightarrow \operatorname{rowrank}(A)=3 .
$$

The rows of A belong to the span of $\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\}$, which has dimension at most two. Therefore

$$
\operatorname{rowrank}(A) \leq 2<3
$$

regardless of what value k assumes.
Answer: No values of k make A invertible.
4. (10 points) Consider the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Let $W \subseteq M_{2 \times 2}(\mathbb{R})$ be the set of 2×2 real matrices that commute with A :

$$
W=\left\{M \in M_{2 \times 2}(\mathbb{R}): A M=M A\right\}
$$

(a) Prove that W is a subspace.

Answer:

We verify the three standard properties.
(i) The 2×2 zero matrix 0_{2} belongs to W because $A 0_{2}=0_{2}=0_{2} A$.
(ii) W is closed under addition: if M, N be two elements of W, then their sum $M+N$ belongs to W because

$$
A(M+N)=A M+A N=M A+N A=(M+N) A
$$

(iii) W is closed under scalar multiplication: if M is an element of W and $\lambda \in \mathbb{R}$, then the scalar product (λM) belongs to W because

$$
A(\lambda M)=\lambda A M=\lambda M A=(\lambda M) A
$$

(b) Find a basis for W, showing all of your work.

Answer:

Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be an element of W. Then

$$
\left[\begin{array}{ll}
a+2 c & b+2 d \\
c+2 a & d+2 b
\end{array}\right]=A M=M A=\left[\begin{array}{ll}
a+2 b & b+2 a \\
c+2 d & d+2 c
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}
a=d \\
b=c
\end{array} .\right.
$$

So $M=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Therefore M belongs to the span of the set $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$, which is linearly independent.

Answer: A basis is $\underline{\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\} .}$
5. (10 points)
(a) Suppose the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $T(a, b)=(a+b, 0)$.
(i) Find a matrix A such that $T \mathbf{v}=A \mathbf{v}$.

Answer:
$A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$.
(ii) Find the dimension of the kernel of T.

Answer:

The vector (a, b) belongs to the nullspace of T precisely when

$$
T(a, b)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \Longleftrightarrow a+b=0
$$

So a basis for the kernel is $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$. Therefore, its dimension is 1 .
Alternatively, the rank of the matrix A in part (a) is 1 , and by the rank-nullity theorem, $\operatorname{dim} \operatorname{ker}(\mathrm{T})=2-\operatorname{rank}(\mathrm{A})=1$.
(b) Suppose the linear transformation $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ is given by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a & b+c \\
b+c & d
\end{array}\right]
$$

(i) Find a basis for the kernel of T.

Answer:

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a & b+c \\
b+c & d
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}
a=d=0 \\
b+c=0
\end{array}\right.
$$

So a basis for the kernel is $\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$.
(ii) What is the dimension of the range of T ?

Answer:
By the Rank-Nullity Theorem for linear transformations we have $\operatorname{dim}\left(M_{2 \times 2}(\mathbb{R})=\operatorname{dim}(\operatorname{range}(T))+\operatorname{dim}(\operatorname{nullity}(T)) \Longrightarrow \operatorname{dim}(\operatorname{range}(T))=4-1=3\right.$.
(iii) Is $\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right]$ in the range of T ? Briefly justify your answer.

Answer:
No because if it were $b+c$ would have to simultaneously be 2 and -2 .
6. (10 points) Let

$$
A=\left[\begin{array}{ccc}
10 & -12 & 8 \\
0 & 1 & 0 \\
-8 & 12 & -6
\end{array}\right]
$$

(a) Find the eigenvalues of A .

Answer:

expanding along the middle row gives that the characteristic polynomial is
$p(t)=\operatorname{det}(A-t I)=(1-t)[(10-t)(-6-t)+64]=(1-t)\left(t^{2}-4 t+4\right)=(1-t)(2-t)^{2}$.
The eigenvalues are its roots: $\lambda=1,2$.
(b) Find a basis for the eigenspace of each eigenvalue found in (a) and state its dimension.

Answer:

The standard algorithm gives that a basis for the $\lambda=1$ eigenspace is $\left\{\left[\begin{array}{c}12 \\ 1 \\ -12\end{array}\right]\right\}$; and a basis for the $\lambda=2$ eigenspace is $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.
(c) Does \mathbb{R}^{3} have a basis consisting of eigenvectors of A ? Explain your answer.

Answer:

No because there are only two linearly independent eigenvectors.
7. (10 points) Find the general solution of:

$$
y^{(4)}-y^{(3)}-6 y^{\prime \prime}=0
$$

Answer:

The auxiliary polynomial is

$$
p(r)=r^{4}-r^{3}-6 r^{2}=r^{2}\left(r^{2}-r-6\right)=r^{2}(r-3)(r+2) .
$$

Therefore the general solution is

$$
y=c_{1} e^{-2 x}+c_{2}+c_{3} x+c_{4} e^{3 x}
$$

8. (10 points) Solve the initial value problem.

$$
y^{\prime \prime}-y=45 \cos (2 x), \quad y(0)=13, \quad y^{\prime}(0)=24
$$

Answer:

As always $y=y_{c}+y_{p}$.
To find y_{c} we look at the auxiliary polynomial $p(r)=r^{2}-1=(r+1)(r-1)$. Therefore

$$
y_{c}=c_{1} e^{-x}+c_{2} e^{x} .
$$

For y_{p} we guess $y_{p}=A \cos (2 x)+B \sin (2 x)$. Substituting in the equation gives

$$
-5 A \cos (2 x)-5 B \sin (2 x)=45 \cos (2 x) \Longrightarrow A=-9, B=0
$$

So the general solution is

$$
y=c_{1} e^{-x}+c_{2} e^{x}-9 \cos (2 x)
$$

The initial conditions give

$$
\left\{\begin{array}{l}
13=c_{1}+c_{2}-9 \\
24=-c_{1}+c_{2}
\end{array} \Longrightarrow c_{1}=-1, c_{2}=23\right.
$$

Putting everything together

$$
y=-e^{-x}+23 e^{x}-9 \cos (2 x)
$$

9. (10 points) A spring with constant k of $13 \mathrm{~N} / \mathrm{m}$ is loaded with a mass of 9 kg and brought to equilibrium. At time 0 , the mass is still in its equilibrium position but it is given a velocity of $5 \mathrm{~m} / \mathrm{s}$. If the mass experiences a resistance (or damping) force in Newtons which has magnitude 12 times the speed at each point, find the position $y(t)$ of the mass at time t.

Answer:

We chose as positive the direction of the initial velocity. The position $y(t)$ satisfies the differential equation

$$
m y^{\prime \prime}+c y^{\prime}+k=0 \Longrightarrow 9 y^{\prime \prime}+12 y^{\prime}+13 y=0, y(0)=0, y^{\prime}(0)=5 .
$$

The auxiliary polynomial is $p(r)=9 r^{2}+12 r+13$. its roots are $r=\frac{-2}{3} \pm i$. So the general solution is

$$
y=c_{1} e^{-2 t / 3} \cos (t)+c_{2} e^{-2 t / 3} \sin (t) .
$$

The initial condition $y(0)=0$ gives $c_{1}=0$. So

$$
y=c_{2} e^{-2 t / 3} \sin (t) \Longrightarrow y^{\prime}=c_{2} e^{-2 t / 3}\left(\cos (t)-\frac{2}{3} \sin (t)\right) .
$$

The initial condition $y^{\prime}(0)=5$ gives $c_{2}=5$.

$$
y=5 e^{-2 t / 3} \sin (t)
$$

10. (10 points) Find the general solution for the first order linear system:

$$
\begin{aligned}
x_{1}^{\prime} & =2 x_{1}+x_{2}-x_{3} \\
x_{2}^{\prime} & =x_{1}-x_{2}-x_{3} \\
x_{3}^{\prime} & =x_{2}+x_{3}
\end{aligned}
$$

Answer:

We must find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & -1 & -1 \\
0 & 1 & 1
\end{array}\right]
$$

Expanding along the first column gives that the characteristic polynomial is

$$
\operatorname{det}(A-t I)=(2-t)\left[\left(t^{2}-1\right)+1\right]-[(1-t)+1]=(2-t)\left(t^{2}-1\right)=(t+1)(t-1)(t-2)
$$

So the eigenvalues are $\lambda=-1,1,2$.
Corresponding eigenvectors are

$$
\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right] .
$$

So the general solution is

$$
\mathbf{x}(t)=c_{1} e^{-t}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3} e^{2 t}\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]
$$

