NTH 165

Final Exam
05/06/2019

Name: Arjun Krishnan

UR ID: \qquad

Circle your Instructor's Name:
Dan-Andrei Geba Saul Lublin Carl McTague Ustun Yildirim

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- The presence of notes is strictly forbidden.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work or justification is given. Please record your final numerical answers in the answer boxes, where these are provided.
- Part A of the exam consists of Problems 1-7 and Part B of the exam consists of Problems 8-14.
- You are responsible for checking that this exam has all 28 pages.

HONOR PLEDGE:

I affirm that I will not give or receive any unauthorized help on this exam, and all work will be my own.

YOUR SIGNATURE: \qquad

Part A

1. (10 points) Find the general solution of the differential equation

$$
\left(x^{2}+3\right) d y-(2 x y-2 x) d x=0
$$

Separate variables.

$$
\begin{aligned}
\frac{d y}{y-1} & =\frac{2 x}{x^{2}+3} d x \\
\int_{y-1}^{y} \frac{d y}{y-1} & =\int^{x} \frac{2 x}{x^{2}+3} d x \Rightarrow \ln |y-1|=\ln \left|x^{2}+3\right|+C
\end{aligned}
$$

(For the RHS integral use the substitution $u=x^{2}+3$)

$$
\Rightarrow|y-1|=e^{c}\left|x^{2}+3\right| \Rightarrow y-1=c^{\prime}\left(x^{3}+3\right) \quad c^{\prime} \in \mathbb{R}
$$

$\Rightarrow y=1+c^{\prime}\left(x^{2}+3\right)$ is a general solution.
(To remove the absolute value, you need to cousider the cares $y-1=e^{c}\left(x^{2}+3\right)$ and $y-1=-e^{c}\left(x^{2}+3\right)$ and define $\left.c^{\prime}= \pm e^{c}\right)$
2. (10 points) A tank whose volume is 40 L is initially half full with fresh water. A solution containing $10 \mathrm{~g} / \mathrm{L}$ of salt is pumped into the tank at a rate of $4 \mathrm{~L} / \mathrm{min}$, and the well-stirred mixture flows out at a rate of $2 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank just before the solution overflows?

$$
\begin{aligned}
& \begin{array}{l}
\log / L \rightarrow=2 L / \min \rightarrow \\
20 L
\end{array} \\
& V(t)=20+2 t \\
& \frac{d A}{d t}=\left(40-2 \frac{A(t)}{V(t)}\right) \Rightarrow \frac{d A}{d t}+\frac{2}{20+2 t} A=40 \\
& \Rightarrow \quad \frac{d A}{d t}+\frac{A}{10+t}=40 \quad I \frac{1}{10+t} d t \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}(A(10+d))=40(10+d) \\
& A(d)(10+d)-A(\not 0) 10=40 \int_{0}^{0}(10+t) d d=40\left[10 d+\frac{d^{2}}{2}\right]
\end{aligned}
$$

$$
A(t)=\frac{400 t+20 t^{2}}{10+t}
$$

$$
A(0)=0 \text { follows from }
$$

the fad that initially
we have nos alt

Answer:

NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on Problem 2 here.
3. (10 points) Let

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

and assume $\operatorname{det} A=1$. Find the determinants of the following matrices:
(a)

$$
B=\left[\begin{array}{ccc}
d-2 a & e-2 b & f-2 c \\
2 g-3 d & 2 h-3 e & 2 i-3 f \\
-4 a & -4 b & -4 c
\end{array}\right]
$$

move constants out

Answer: $\operatorname{det} B=$
(b)

$$
C=\left[\begin{array}{ccc}
a+2 b & d+2 e & g+2 h \\
3 b-5 c & 3 e-5 f & 3 h-5 i \\
b & e & h
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{det}(c)= \\
& R_{1}=R_{1}-2 R_{3}
\end{aligned}\left|\begin{array}{ccc}
a & d & g \\
3 b-5 c & 3 e-5 \delta & 3 h-5 i \\
b & e & h
\end{array}\right|, \left.\begin{array}{ccc}
a & g \\
= & d & \\
-5 c & -5 \delta & -5 i \\
b & e & h
\end{array}|=(-5)| \begin{array}{ccc}
a & d & g \\
c & \delta & i \\
b & e & h
\end{array} \right\rvert\,
$$

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{swap} R_{2} \alpha l_{3} \\
=(-5)(-1)
\end{array}\left|\begin{array}{lll}
a & d & g \\
b & e & h \\
c & f & i
\end{array}\right|=5\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| \\
& =\begin{array}{l}
\operatorname{ded}(A) \\
\\
=5
\end{array}
\end{aligned}
$$

4. (10 points) For the following vector spaces V, determine whether or not the given set W is a subspace of V. In either case, justify your answer thoroughly.
(a) $V=M_{3}(\mathbb{R})$ (i.e., the vector space of 3×3 matrices with real elements) and

$$
W=\left\{A \in V \mid A^{T}=2 A\right\}
$$

suppose $A \in W$ thu $A^{\top}=2 A$. If $B \in W$ $\begin{array}{ll}(A+B)^{\top}=A^{\top}+B^{\top}=2 A+2 B=2(A+B) & \text { closed } \\ \text { under } \\ \Rightarrow A+B \in W & \text { addition. }\end{array}$

$$
\text { if } \lambda \in \mathbb{R}
$$

$$
\begin{aligned}
(\lambda A)^{\top}=\lambda A^{\top}=\lambda 2 A= & 2(\lambda A) \\
& \text { closed under } \\
& \text { scalar multiplication. }
\end{aligned}
$$

YES ω is a subspace

Circle one answer. W is a subspace: YES or NO.
(b) $V=C^{1}(\mathbb{R})$ (i.e., the vector space of differentiable functions on \mathbb{R}, whose derivative is continuous) and W is the subset of V consisting of those functions satisfying the differential equation

$$
y^{\prime}=y^{2}+2 y
$$

on \mathbb{R}.

$$
\begin{aligned}
& \text { Ugly method } \\
& \text { (Solve the DE) } \\
& \Rightarrow \frac{d y}{2}\left(\frac{1}{y}-\frac{1}{y+2}\right)^{y(y+2)}=d x \\
& \Rightarrow \quad \frac{1}{2}[\log |y+\log | y+2 \mid]=x+C \\
& \frac{y}{y+2}=c^{\prime} e^{2 x} \quad c^{\prime} \in \mathbb{R} \\
& y\left(1-c^{\prime} e^{2 x}\right)=2 c^{\prime} e^{2 x}
\end{aligned}
$$

$* 1 \rightarrow y=\frac{2 c^{\prime} e^{2 x}}{1} \quad$ Take $c^{\prime}=1$ and $c^{\prime}=-1$

$$
y_{1}=\frac{2 e^{2 x}}{1-e^{2 x}} \quad y_{2}=\frac{-2 e^{2 x}}{1+e^{2 x}}
$$

$y_{1}+y_{2}=\frac{2 e^{2 x}\left(1+e^{2 x}-1-e^{2 x}\right)}{1-e^{4 x}}$ which is not of form in (*1)
Easy: $y=-2$ is a solution BUT $(2 y)(x)=-4$ is not asoutiono
This shows that w is not closed under scalar multiplication.
Circle one answer. W is a subspace: YES or NO.
5. (10 points) Determine a spanning set S for the subspace of \mathbb{R}^{3} consisting of all solutions to the linear system

$$
\left\{\begin{array}{l}
2 x_{1}-3 x_{2}+5 x_{3}=0 \\
3 x_{1}-4 x_{2}+7 x_{3}=0
\end{array}\right.
$$

$$
\left.\begin{array}{l}
\text { A }=\left[\begin{array}{llll}
2 & -3 & 5 & 0 \\
3 & -4 & 7 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
3 & -4 & 7 \\
3 x_{1}-4 x_{2}+7 x_{3}=0 \\
2 & -3 & 5
\end{array}\right]
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 \\
2 & -3 & 5
\end{array}\right]
$$

Set $x_{3}=t \Rightarrow x_{2}=t, x_{1}=-t$
So the solution ret is $S=\{(-t, t, t): t \in \mathbb{R}\}$

$$
=\{t(-1,1,1): t \in \mathbb{R}\}=\operatorname{span}\{(-1,1,1)\}
$$

Answer: $S=\{(-1,1,1)\}$
6. (10 points) Using the Wronskian, show that the functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x, \quad f_{3}(x)=\tan x
$$

are linearly independent on the interval $(-\pi / 2, \pi / 2)$.

$$
\begin{aligned}
& \omega(x)=\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
\cos x & -\sin x & \frac{1}{\cos ^{2} x} \\
-\sin x & -\cos x & -\frac{2}{\cos ^{3} x} \sin x
\end{array}\right| \\
& \text { Try } \omega(0)=\left|\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right|=0 \quad \text { (no ur) } \\
& \omega\left(\frac{\pi}{4}\right)=\left|\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 2 \\
-1 / \sqrt{2} & -1 / \sqrt{2} & -2.1 \cdot 2
\end{array}\right|=\left|\begin{array}{ccc}
0 & 0 & 1 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 2 \\
-1 / \sqrt{2} & -1 / \sqrt{2} & -4
\end{array}\right|=-\frac{1}{2}-\frac{1}{2}=-1 \\
& \neq 0
\end{aligned}
$$

So they're linearly independent.
We used $\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}=\cos \left(\frac{\pi}{4}\right) \quad \tan \left(\frac{\pi}{4}\right)=1$
7. (10 points) Find, with proof, a basis B for the subspace of $M_{2}(\mathbb{R})$ spanned by

$$
\underbrace{\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]}_{A_{1}}, \quad \underbrace{\left[\begin{array}{cc}
1 & 3 \\
-1 & 0
\end{array}\right]}_{A_{2}}, \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right], \quad\left[\begin{array}{cc}
{\left[\begin{array}{cc}
0 & -1 \\
2 & 3
\end{array}\right]}
\end{array}\right.
$$

Corresponding equations:

$$
\begin{aligned}
& \operatorname{span}\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}=\left\{a A_{1}+b A_{2}+c A_{3}+d A_{4}: a_{1} b_{1}, d\right. \\
& A=\left[\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
1 & 3 & 0 & -1 \\
0 & -1 & 1 & 2 \\
1 & 0 & 2 & 3
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 3 & -2 & -4 \\
0 & -1 & 1 & 2 \\
0 & 1 & 3 & 3
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 3 \\
0 & -1 & 1 & 2 \\
0 & 3 & -2 & -4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 3 \\
0 & 0 & 4 & 5 \\
0 & 0 & -11 & -13
\end{array}\right] \\
& \begin{array}{c}
\sim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 3 \\
0 & 0 & 1 & 5 / 4 \\
0 & 0 & -11 & -13
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 3 \\
0 & 0 & 1 & 5 / 4 \\
0 & 0 & 0 & -13+\frac{55}{4}
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & 3 & 3 \\
0 & 0 & 1 & \frac{5}{4} \\
0 & 0 & 0 & \frac{-17}{4}
\end{array}\right]
\end{array} \\
& \operatorname{Rank}(A)=4=\operatorname{dim}\left(M_{2}\right) \quad \text { So } \operatorname{span}\left\{A_{1} A_{2} \quad A_{3} A_{4}\right\}=M_{2}
\end{aligned}
$$

Answer: $B=\left\{A_{1}, A_{2}, A_{3_{1}} A_{4}\right\}$

NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on Problem 7 here.

Part B
8. (10 points) Let

$$
A=\left[\begin{array}{llll}
2 & -1 & 1 & 4 \\
1 & -1 & 2 & 3 \\
1 & -2 & 5 & 5
\end{array}\right]
$$

(a) Determine a basis B for colspace (A).

$$
\text { lets find RREF }(A) \quad A=\left[\begin{array}{cccc}
2 & -1 & 1 & 4 \\
1 & -1 & 2 & 3 \\
1 & -2 & 5 & 5
\end{array}\right]
$$

$$
R_{1}=A_{1}-R_{2} \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
1 & -1 & 2 & 3 \\
1 & -2 & 5 & 5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & -1 & 3 & 2 \\
0 & -2 & 6 & 4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & -3 & -2 \\
0 & -2 & 6 & 4
\end{array}\right]
$$

$$
\stackrel{R_{3} \cdot R_{3}+R_{2} R_{2}}{\sim}\left[\begin{array}{cccc}
\text { lading }^{1} \\
1 & 0 & -1 & 1 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So the lIst 2 coleus of A form a basis.
for olspan (A)

$$
B=\left\{\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
-1 \\
-2
\end{array}\right)\right\}
$$

Answer: $B=$

NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on part (a) here.
(b) Using the Rank-Nullity Theorem, compute the nullity of A.

$$
\begin{aligned}
& \operatorname{rank}(A)=2 \quad \quad \# \text { of colure of } A=4 \\
& \operatorname{nv} \|(A)=4-2=2
\end{aligned}
$$

Answer: $\operatorname{nullity}(A)=$
9. (10 points) Consider the matrix

$$
C=\left[\begin{array}{ccc}
-3 & 1 & 0 \\
-1 & -1 & 2 \\
0 & 0 & -2
\end{array}\right]
$$

(a) Find all eigenvalues of C.

$$
\begin{aligned}
& \left.\operatorname{det}(\lambda I-C)=\left|\begin{array}{ccc}
\lambda+3 & -1 & 0 \\
1 & \lambda+1 & -2 \\
0 & 0 & \lambda+2
\end{array}\right|=(\lambda+3)(\lambda+1)(\lambda+2)\right]+1 \cdot(\lambda+2)=0 \\
& (\lambda+2)\left(\lambda^{2}+4 \lambda+3+1\right)=0 \Rightarrow(\lambda+2)(\lambda+2)(\lambda+2)=0
\end{aligned}
$$

$\Rightarrow \lambda=2$ is the only eigenvalue. To find the eigenspace of $\lambda=-2$
we have to find the solution ret of $(C-\lambda I) v=\overrightarrow{0}$

$$
\begin{aligned}
& \text { we have to find the solution ret of } \\
& (C-\lambda I)^{\#}=\left[\begin{array}{ccc:c}
-1 & 1 & 0 & 0 \\
-1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc:c}
-1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow S=\{t(1,1,0): t \in \mathbb{R}\}
\end{aligned}
$$

So the eigenspare is one dimensional
(b) Determine a basis for each of the eigenspaces associated to C.

$$
B=\{(1,1,0)\}
$$

Answer:

NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on part (b) here.
(c) Using the previous parts, argue whether C is defective or nondefective.

$$
\begin{aligned}
& \text { The multiplicity of }-2 \text { is } 3 . \\
& \qquad \operatorname{dim}\left(E_{-2}\right)=1<3 \\
& \Rightarrow C \text { is } D E F E C T I V E
\end{aligned}
$$

Circle one answer. C is defective: YES or NO.
10. (10 points) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation satisfying

$$
T \underbrace{(1,2,0}_{u_{1}})=\underbrace{(2,-1,1}_{z_{1}}), \quad T(0,1,1)=(3,-1,-1), \quad T(0,2,3)=(6,-5,4),
$$

find the matrix A associated to T (i.e., find the matrix A such that $T(\mathbf{x})=A \mathbf{x}$.)

Write $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$ Using column expansion and the
equations $A u_{i}=z_{i}$ for $i=1,2,3$ we get the equations

$$
\left.\begin{array}{l}
\left.v_{1}+2 v_{2}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)\right] \left.v_{3}=\left(\begin{array}{c}
6 \\
-5 \\
4
\end{array}\right)-\left(\begin{array}{c}
6 \\
-2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right) \right\rvert\, v_{2}=\left(\begin{array}{c}
3 \\
-1 \\
-1
\end{array}\right)-\left(\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right) \\
v_{2}+v_{3}=\binom{3}{-1} \Rightarrow v_{1}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)-\left(\begin{array}{c}
6 \\
4 \\
-6
\end{array}\right)=\left(\begin{array}{c}
-4 \\
-5 \\
-7
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-3
\end{array}\right) \\
\left.2 v_{2}+3 v_{3}=\left(\begin{array}{c}
6 \\
-5 \\
4
\end{array}\right)\right] \\
A
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
-5 & 2 & -3 \\
-7 & 3 & 2
\end{array}\right] .
$$

Answer:

$$
A=
$$

Alternatively: We know the matrix corroponding to T courisb of the colum $\left[\begin{array}{lll}T e_{1} & T e_{2} & T e_{3}\end{array}\right]$ Thus we only reed to
write $e_{1}=a_{1} u_{1}+b_{1} u_{2}+c u_{3}$ toged $T e_{1}=a T u_{1}+b T u_{2}+c T u_{3}$
Thus $\underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 2 \\ 0 & 1 & 3\end{array}\right]}_{B} \underbrace{\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]}_{B^{-1}}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Then $\left[\begin{array}{lll}T e_{1} & T e_{2} & T e_{3}\end{array}\right]=\left[\begin{array}{ccc}z_{1} & z_{2} & z_{3} \\ 2 & 3 & 6 \\ -1 & -1 & -5 \\ 1 & -1 & 4\end{array}\right] B^{-1} \quad \operatorname{dit}(B)=1$

$$
\begin{aligned}
& \operatorname{cof}(A)=\left[\begin{array}{ccc}
1 & -6 & 2 \\
0 & 3 & -1 \\
0 & -2 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-6 & 3 & -2 \\
2 & -1 & 1
\end{array}\right] \\
& \Rightarrow\left[\mathrm{Te}_{1} \mathrm{Te} \mathrm{Te}_{3}\right]=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
-5 & 2 & -3 \\
-7 & 3 & 2
\end{array}\right]
\end{aligned}
$$

11. (10 points) Consider the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ given by

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{ll}
a+b & b+c \\
b+c & a-c
\end{array}\right] \text {. }
$$

$$
\begin{aligned}
& \text { (a) Determine a basis for } \operatorname{Ker}(T) . \\
& T p=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \text { gives } \begin{array}{c}
\begin{array}{c}
a+b \\
b+c \\
a-c
\end{array} \underbrace{A}_{A}=0
\end{array} \quad A^{*}=\left[\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & -1 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { Set } c=t \Rightarrow b=-t a=t
\end{aligned}
$$

Thus $S=\left\{t\left(x^{2}-x+1\right): t \in \mathbb{R}\right\}$ is the solution ret. and $\left\{x^{2}-x+1\right\}$ is a basis for the hernel.

Answer:
(b) Determine a basis for $\operatorname{Rng}(T)$.

By rank-nullity we must have $\operatorname{dim}(\operatorname{her}(T)) \& \operatorname{dim}(\operatorname{Rng}(T))$

$$
=\operatorname{dim}\left(\mathbb{P}_{2}\right)=3
$$

$$
\Rightarrow \operatorname{dim}(\operatorname{Rng}(T))=2
$$

Note that any T_{x} is of the form $\left[\begin{array}{ll}a+b & b+c \\ b+c & a-c\end{array}\right]$

- ret $\lambda=a+b$ $\mu=a-c$

$$
=\left[\begin{array}{cc}
\lambda & \lambda-\mu \\
\lambda-\mu & \mu
\end{array}\right]=\lambda\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]+\mu\left[\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right]
$$

Thus the basis for the range is $\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ -1 & 1\end{array}\right]\right\}$
12. (10 points) Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime \prime}+2 y^{\prime \prime}-4 y^{\prime}-8 y=0 \\
y(0)=0, \quad y^{\prime}(0)=6, \quad y^{\prime \prime}(0)=8
\end{array}\right.
$$

This is a polynomial differential operator.
$P(D)=D^{3}+2 D^{2}-4 D+8$ with Corresponding
polynomial $\quad \lambda^{3}+2 \lambda^{2}-4 \lambda+8=0$ You can guess $1 \operatorname{rod}(\lambda=-2)$
$\Rightarrow(\lambda+2)\left(\lambda^{2}-4\right)=0 \Rightarrow(\lambda+2)(\lambda+2)(\lambda-2)$ So the eigenvalues are $\lambda= \pm 2$
-2 has multiplicity 2 so we have $\operatorname{th} 2$ lin. indef. solutions

$$
\left\{e^{-2 t}, t e^{-2 t}\right\}
$$

and 2 has multiplicity 1 with solution $e^{2 t}$.
Thus the general solution is

$$
y(x)=A e^{-2 t}+B t e^{-2 t}+C e^{2 t}
$$

Answer: $y(x)=$

NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on Problem 12 here.

$$
\begin{aligned}
& y^{\prime}=-2 A e^{-2 t}+B e^{-2 t}-2 B t e^{-2 t}+2 C e^{2 t} \\
& y^{\prime \prime}=4 A e^{-2 t}-2 B e^{-2 t}-2 B e^{-2 t}+4 B t e^{-2 t}+4 C e^{2 t}
\end{aligned}
$$

Pugging in initial data

$$
\begin{array}{ll}
\text { Pugging in initial data } & A-B+C=2 \Rightarrow B=-2 \\
\begin{array}{ll}
A+C=0 & -2 A+2 C=8 \\
-2 A+B+2 C=6 & -A+C=4 \Rightarrow C=2 \\
4 A-4 B+4 C=8 &
\end{array} & \Rightarrow A=-2
\end{array}
$$

$$
y(x)=-2 e^{-2 t}-2 t e^{-2 t}+2 e^{2 t}
$$

13. (10 points) Find the general solution to the differential equation

$$
\left(D^{2}+D-2\right) y=4 \cos x-2 \sin x
$$

Homogeneous eqn: $y^{\prime \prime}+y^{\prime}-2 y=0$ Alternaluly you can find the Characteristic polynomial

$$
\lambda^{2}+\lambda-2=0
$$ eigenvalue of the associated linear system Eigenvalues: $\operatorname{det}\left(\begin{array}{cc}\lambda & -1 \\ -2 & \lambda+1\end{array}\right)=0$

$\Rightarrow(\lambda+2)(\lambda-1)=0 \quad \lambda=2$ and $\lambda=1$ (with multiplicity 1 each)
rot the homogeneous part: $y(x)=A e^{2 x}+B e^{x} \quad$ (general solution)
To find a particular solution, let $u(x)=p \cos x+q \sin x$

$$
\begin{aligned}
& (-q-p-2 q) \sin x \\
& (-p+q-2 p) \cos x
\end{aligned}
$$

$$
u^{\prime \prime}+u-2 u=\cos x \underbrace{(-p+q-2 p}_{4})+\sin x \underbrace{(-q-p-2 q}_{-2})
$$

Answer: $y(x)=$

NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on Problem 13 here.

$$
\begin{aligned}
\Rightarrow(-p-3 q) & =-2 \Rightarrow q+q q=4+6 \Rightarrow q=1 \quad p=-1 . \text { Hence, } \\
-3 p+q & =4 \\
u(x) & =-\cos x+\sin x
\end{aligned}
$$

Thus the general soles is of the form

$$
y(x)=-\cos x+\sin x+A e^{2 x}+B e^{x}
$$

14. (10 points) Determine the general solution to the system

$$
\left\{\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)+3 x_{3}(t) \\
x_{2}^{\prime}(t) & =-4 x_{2}(t) \\
x_{3}^{\prime}(t) & =-3 x_{1}(t)+2 x_{3}(t)
\end{aligned}\right.
$$

None that $x_{2}^{\prime}=-4 x_{2}$ has general solution $x_{2}=A_{2} e$

$$
\left[\begin{array}{ll}
x_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}
\end{array}\right] \text { has char polynomial }(\lambda-2)(\lambda-2)+9=0
$$

rocutions of the form $x_{1}=e^{-2 t}\left(A_{1} \cos (3 t)+A_{3} \sin (3 t)\right)$

$$
x_{3}=e^{-2 t}\left(-A_{1} \sin (3 t)+A_{3} \cos (3 t)\right)
$$

So the general solution is

$$
\begin{aligned}
& x_{1}=e^{-2 t}\left(A_{1} \cos (3 t)+A_{3} \sin 3 t\right) \\
& x_{2}=A_{2} e^{-4 t} \\
& x_{3}=e^{-2 t}\left(-A_{1} \sin (3 t)+A_{3} \cos (3 t)\right)
\end{aligned}
$$

Answer: $\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right]=$
NOTE: THERE IS MORE ROOM TO WORK ON THE NEXT PAGE.

Continue working on Problem 14 here.

SCRATCHWORK.

