MATH 165

Final Exam

December 16, 2018

NAME (please print legibly): \qquad Your University ID Number: \qquad
Honor Pledge: "I affirm that I did not provide or receive any unapproved assistance during this exam." Sign here:
Circle your Instructor's Name along with the Lecture Time:

> Jonathan Pakianathan (TR 2) \quad Rufei Ren (MW 2) Kazuo Yamazaki (MW 12:30) Ustun Yildirim (MW 9)

- No notes, books, calculators or other electronics are allowed on this exam.
- Please SHOW ALL your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

Part A		
QUESTION	VALUE	SCORE
1	22	
2	15	
3	15	
4	18	
5	15	
6	15	
TOTAL	100	

Part B		
QUESTION	VALUE	
1	17	
SCORE		
2	16	
3	17	
4	17	
5	16	
6	17	

Part A

1. $(22 \mathrm{pts})$
[11 points] (a) Find the solution to the differential equation

$$
x \ln (x) y^{\prime}-y^{2}=1
$$

which satisfies the initial condition $y(e)=1$.

$$
\begin{aligned}
\begin{aligned}
& x \ln x y^{\prime}=1+y^{2} \\
& \frac{1}{1+y^{2}} y^{\prime}=\frac{1}{x \ln x} \\
& \int \frac{1}{1+y^{2}} d y=\int \frac{1}{x \ln x} d x \\
& \operatorname{let} u=\ln x \\
& d n=\frac{1}{x} d x \\
& \quad \int \frac{1}{v} d u=\ln (u) . \\
& \\
& \arctan (y)=\ln (\ln x)+c \quad \\
& y=\tan (\ln (\ln x)+c) \\
&=\tan (\ln (1)+c) \\
&=\tan (c) \\
&=1 \\
& c=\frac{\pi}{4}
\end{aligned}
\end{aligned}
$$

$$
y=\tan \left(\ln (\ln x)+\frac{\pi}{4}\right)
$$

ANSWER: \qquad
[11 points] (b) Find the general solution of the differential equation $x y^{\prime}-3 y=x^{8}$.

$$
\begin{aligned}
& y^{\prime}-\frac{3}{x} y=x^{7} \\
& \text { Lex } I(x)=e^{-\int \frac{3}{x} d y}=e^{-3 \ln x}=x^{-3} \\
& x^{-3} y=\int x^{-3} x^{7} d x \\
&=\int x^{4} d x \\
&=\frac{x^{5}}{5}+c
\end{aligned}
$$

$$
y=\frac{x^{8}}{5}+x^{3} c
$$

2. (15 pts)

Use Gauss-Jordan reduction to find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
-2 & -2 & 5
\end{array}\right]
$$

$$
\left.\begin{array}{l}
\text { if it exists. } \\
{\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & 0 & 1 & 0 \\
-2 & -2 & 5 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}+2 R_{1}}\left[\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & 0 & 1 & 0 \\
0 & 2 & 7 & 2 & 0 & 1
\end{array}\right]} \\
\xrightarrow[R_{3}-2 R_{2}]{R_{1}-2 R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & -5 & 1 & -2 & 0 \\
0 & 1 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & -2 & 1
\end{array}\right] \xrightarrow{R_{1}+5 R_{3}}\left[\begin{array}{llllll}
1 & 0 & 0 & 11 & -12 & 5 \\
0 & 1 & 0 & -6 & 7 & -3 \\
0 & 0 & 1 & -2 & -2 & 1
\end{array}\right] \\
A^{-1}
\end{array}\right]\left[\begin{array}{ccc}
11 & -12 & 5 \\
-6 & 7 & -3 \\
-2 & -2 & 1
\end{array}\right] .
$$

3. ($\mathbf{1 5} \mathbf{p t s}$) Consider a system of linear equations expressed as $\mathbb{A} \mathbf{x}=\mathbf{b}$ where \mathbb{A} is a $m \times n$ matrix. Let $\mathbb{A}^{\#}$ denote the augmented matrix for the system, $r=\operatorname{rank}(\mathbb{A})$ and $r^{\#}=\operatorname{rank}\left(\mathbb{A}^{\#}\right)$. In each of the following cases, what can be said about the number of solutions? (Circle only one of the choices in each part.)
4. If $r=r^{\#}$, then the system
(2) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
5. If $r<r^{\#}$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
6. If $m=n$ and $r=m$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
7. If $m=n, \mathbf{b}=\mathbf{0}$, and $r<m$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
8. If $m<n$ and $\mathbf{b} \neq \mathbf{0}$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.

4. (18 pts)

[8 points] (a) Find the determinant of

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
3 & 2 & 0 \\
5 & 2 & 1 \\
-1 & 7 & 0
\end{array}\right) \\
(-1)\left|\begin{array}{cc}
3 & 2 \\
-1 & 7
\end{array}\right|=(-1)(21+2)=-23
\end{gathered}
$$

ANSWER: \qquad
[10 points] (b) Suppose A is a 4×4 matrix with $\operatorname{det}(A)=2$ and B is obtained from A by adding 5 times row 2 to row 3 . Then:
(i) $\operatorname{det}(3 A)=\quad 3^{4}(2)$
(ii) $\operatorname{det}\left(A^{T}\right)=\quad 2$
(iii) $\operatorname{det}\left(A^{-1}\right)=\frac{1}{2}$
(iv) $\operatorname{det}\left(A^{3}\right)=-\quad 8$
(v) $\operatorname{det}(B)=$ 2
5. (15 pts) Determine which of the following subsets of \mathbb{P}_{3} are subspaces of $\mathbb{P}_{3} .\left(\mathbb{P}_{3}\right.$ is the vector space of real polynomials of degree 3 or less.) For each subset, circle NO if it is not a subspace and list a subspace property that fails for this subset in the provided slot. Circle YES if it is a subspace and in this case find and enter the dimension of this subspace in the slot provided.
(a) $S_{1}=\left\{p(t) \in P_{3} \mid p^{\prime}(t)+2 p(t)+7=0\right.$ for all $\left.t\right\}$

NO it is not a subspace. A subspace property that fails to hold is zero vector not in S_{1}.
YES it is a subspace and its dimension is \qquad
(b) $S_{2}=\left\{p(t) \in P_{3} \mid p(-t)=p(t)\right.$ for all $\left.t\right\}$

$$
\begin{aligned}
& a t^{3}+b t^{2}+c t+\mathscr{L}=-a t^{3}+b t^{2}-c t+d^{t} \\
& \left.\begin{array}{l}
c t+p=-a t^{3}+b t^{2}-c t+\alpha \\
2 a=0 \\
2 c=0
\end{array}\right\} a=c=0 . \text { Ten } a \text { basic. } \quad\left\{\left\{t^{2}, 1\right\}\right.
\end{aligned}
$$

NO it is not a subspace. A subspace property that fails to hold is \qquad
YES it is a subspace and its dimension is \qquad
(c) $S_{3}=\left\{p(t) \in P_{3} \mid p(0)=1\right\}$

YO it is not a subspace. A subspace property that fails to hold is no zero vector
YES it is a subspace and its dimension is \qquad
(d) $S_{4}=\left\{p(t) \in P_{3} \mid p^{\prime \prime \prime}(t)=0\right.$ for all $\left.t\right\}$
$\left.\begin{array}{l}P^{(t)=a t^{3}+b t^{2}+c t+d} \\ P^{\prime}(t)=3 a t^{2}+2 b t+c \\ P_{p^{\prime \prime}}^{\prime \prime}(t)=6 a t+2 b\end{array}\right\} S_{4}=P_{2}$.
NO it is not a subspace. A subspace property that fails to hold is \qquad
YES it is a subspace and its dimension is \qquad 3
(e) $S_{5}=\left\{p(t) \in P_{3} \mid p^{\prime}(3)=p(1)\right\}$

$$
\begin{array}{cc}
=\left\{p(t) \in P_{3} \mid p^{\prime}(3)=p(1)\right\} \\
3 a(9)+2 b(3)+c=a+b+c t d \\
26 a+5 b-d=0 & \text { Arc is. S5 has the form } \\
d=26 a+5 b & a t^{3}+b t^{2}+c t+26 a+5 b
\end{array}
$$

NO it is not a subspace. A subspace property that fails to hold is \qquad
YES ii is a subspace and its dimension is \qquad 3

6. (15 pts)

The reduced row echelon form of

$$
A=\left(\begin{array}{ccccc}
3 & -6 & 1 & 3 & 0 \\
2 & -4 & 1 & -1 & 0 \\
3 & -6 & 0 & 12 & 1
\end{array}\right)
$$

is

$$
U=\left(\begin{array}{ccccc}
1 & -2 & 0 & 4 & 0 \\
0 & 0 & 1 & -9 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

[3 points] (a) The rank of A is

ANSWER:
3
[3 points] (b) The nullity of A is

ANSWER: \qquad 2
[3 points] (c) List a set of basis vectors for the column space of A.

ANSWER: $\left(\begin{array}{l}3 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
$\begin{array}{ll}\text { [3 points] (d) List a set of basis vectors for the null space of } A . \\ x_{1}=2 x_{2}-4 x y & N=\left(2 x_{2}-4 x_{4}, x_{2}, 9 x y, y_{4}, 0\right) \\ x_{3}=9 x_{-1} & =\operatorname{spen}\{(2,1,0,0,0),(-4,0,9,1,0)\} \\ x_{5}=0 & \end{array}$

ANSWER: \qquad
[3 points] (e) Give an example of a nontrivial linear dependency amongst the columns of A.

$$
C_{2}+2 C_{1}=0
$$

ANSWER:

Part B

1. ($\mathbf{1 7} \mathbf{~ p t s}$) For the differential equation

$$
\left(D^{2}+1\right)^{2}(D+2) y=x
$$

[7 points] (a) Find the general solution y_{c} to its associated homogeneous differential equation.

$$
y_{c}=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x+c_{5} e^{-2 x}
$$

ANSWER: \qquad
[7 points](b) Find a particular solution y_{p} to the differential equation.

$$
\begin{aligned}
& y_{p}=A+B x \\
& \left(D^{2}+1\right)^{2}(D+2)(A+B x) \\
& =\left(D^{2}+1\right)^{2}(B+2 A+2 B X) \\
& \begin{aligned}
&=\left(D^{2}+I\right)(B+2 A+2 B x)= B+2 A+2 B x=x \\
& 2 B=1 \\
& B+2 A=0
\end{aligned} \\
& B=\frac{1}{2} \\
& \begin{array}{r}
\frac{1}{2}=-2 A \\
A=-\frac{1}{4}
\end{array}
\end{aligned}
$$

ANSWER: $\quad y_{p}=-\frac{1}{4}+\frac{1}{2} x$
[3 points](c) Determine the general solution to the differential equation.
ANSWER: $y=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x+c_{5} e^{-2 x}$
2. ($\mathbf{1 6} \mathbf{p t s}$) Consider the 3×3 matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]
$$

[4 points] (a) Determine the eigenvalues of A.

$$
p(\lambda)=(2-\lambda)(1-\lambda)^{2}
$$

ANSWER:

[8 points] (b) Determine the eigenspaces corresponding to each of the eigenvalues of A.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
2 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=x_{2}=0 \\
v_{2}=(0,0,1) . \\
\lambda_{2}=2 \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
2 & -1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
2 y_{1}=x 3 \\
y_{2}=0 \\
(1,0,2)
\end{array}}
\end{array} . \begin{array}{l}
1,
\end{array},}
\end{aligned}
$$

ANSWER:
[4 points] (c) Determine if A is defective. Justify your answer.

3. (17 pts) Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

with $y(0)=1, y^{\prime}(0)=2$.

$$
\begin{aligned}
p(r)= & r^{2}+2 r+5 \\
r & =-\frac{2 \pm \sqrt{4-20}}{2} \\
& =-1 \pm 2 i
\end{aligned}
$$

$$
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

$$
y(0)=c_{1}=1
$$

$$
y^{\prime}(x)=-e^{-x}\left(\cos (2 x)+c_{2} \sin 2 x\right)
$$

$$
\begin{aligned}
& -x\left(\cos (2 \infty)+\cos _{2} \sin \left(-2 \sin (2 x)+2 c_{2} \cos 2 x\right)\right. \\
& +e^{-x}(-2 x)
\end{aligned}
$$

$$
y^{\prime}(0)=1+2 c_{2}=2
$$

$$
2 c_{2}=1
$$

$$
c_{2}=\frac{1}{2}
$$

$$
y=c^{-x}\left(\cos 2 x+\frac{1}{2} \sin 2 x\right)
$$

ANSWER:
4. ($\mathbf{1 7} \mathbf{~ p t s}$) The motion of a certain physical system is described by

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-c x_{1}-b x_{2}
\end{aligned}
$$

where $b>0, c>0$ and $b>2 \sqrt{c}$ and the independent variable is time t. [13 points] (a) Find the general solution for x_{1} and x_{2}.

$$
\lambda_{2}=\frac{-b-\sqrt{b^{2}+c}}{2} \quad A-\lambda_{2} I \text { in ronal form: }
$$

$$
\begin{aligned}
& A-\lambda_{2} I \text { in redial form: } \\
& {\left[\begin{array}{cc}
\frac{b+\sqrt{b^{2}+c}}{2} & 1 \\
0 & 0
\end{array}\right] \quad x_{1}\left(\frac{b+\sqrt{b^{2}+c}}{2}\right)=-x_{2}} \\
& r_{2}=\left(2,-b-\sqrt{b^{2} 4_{c}}\right)
\end{aligned}
$$

$$
\text { ANSWER: } \vec{X}(t)=c_{1} e^{\left(-\frac{b+\sqrt{b^{2 c c}}}{2}\right) t}\left[\begin{array}{c}
2 \\
-b+\sqrt{b^{2}-4 c}
\end{array}\right]+c_{2} e^{\left(\frac{-b-\sqrt{b^{2}-4 c}}{2}\right) t}\left[\begin{array}{c}
2 \\
-b-\sqrt{b^{2}-4 c}
\end{array}\right]
$$

[4 points] (b) What happens to the general solution in (a) as $t \rightarrow \infty$? Does it blow up or approach a certain limit? Justify your answer carefully.

So th solution $\rightarrow\left[\begin{array}{l}0 \\ 0\end{array}\right]$

ANSWER:

$$
\begin{aligned}
& b=\sqrt{b^{2}} \text {, bece-se } b>0 .\left\{\begin{array}{l}
\left(-b+\sqrt{b^{2}-4}\right) t \\
e
\end{array} \rightarrow 0\right. \\
& \text { Th }=\sqrt{b^{2}}>\sqrt{b^{2}-4 c} . \quad\left\{\begin{array}{l}
\text { so } 0>-b+\sqrt{b^{2}-4 c}
\end{array}\right\} \begin{array}{l}
e \\
a\left(-b-\sqrt{b^{2}-4 c}\right) t \\
e^{(-b} \rightarrow 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & 1 \\
-c & -b
\end{array}\right] \quad\left|\begin{array}{cc}
-\lambda & 1 \\
-c & -b-\lambda
\end{array}\right|=+\lambda(+b+\lambda)+c \\
& =\lambda^{2}+b \lambda+c \\
& \lambda=\frac{-b \pm \sqrt{b^{2}-4 c}}{2} \quad \begin{array}{ll}
\quad & >2 \sqrt{c} \text { are positive, so } \\
& \Rightarrow b^{2}>4 c
\end{array} \\
& \Rightarrow 2 \text { distinct col volts } \\
& \lambda_{1}=\frac{-b+\sqrt{b^{2}-4 c}}{2} \\
& A-\lambda_{1} I=\left[\begin{array}{cc}
\frac{b-\sqrt{b^{2}-4 c}}{2} & 1 \\
-c & -b-\left(\frac{-b+\sqrt{b^{2} 4 c}}{2}\right.
\end{array}\right] \rightarrow\left(\begin{array}{cc}
\frac{b-\sqrt{b^{2 A} c}}{2} & 1 \\
0 & 0
\end{array}\right) \\
& \frac{b-\sqrt{b^{2}-4 c}}{2} x_{1}=-x_{2} \quad v_{1}=\left(2,-b+\sqrt{b^{2}-4 c}\right)
\end{aligned}
$$

5. (16 pts)

[8 points] (a) Suppose a system $\hat{x}^{\prime}=\mathbb{A} \hat{x}$ where \mathbb{A} is a 2×2 matrix has general solution

Find \mathbb{A}.

$$
\hat{x}=C_{1} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$\lambda_{1}=3, v_{1}=\binom{1}{1}$
$\lambda_{2}=2, v_{2}=\binom{1}{2}$
$-O R-$ C not covereal in 524):Solution
$Q=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right] \quad D=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
$A=Q D Q^{-1}=\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{1}{1}=\binom{a+b}{c+d}=\binom{3}{3}
$$

$$
\left.\left.\begin{array}{rl}
c & d
\end{array}\right] \begin{array}{ll}
a & b \\
c & d
\end{array}\right]\binom{1}{2}=\binom{a+2 b}{c+2 d}=\binom{2}{4}
$$

$$
\left.\begin{array}{rl}
(z) & =(c+2 d \\
a+b & =3 \\
a+2 b & =2 \\
c+d & =3 \\
c+2 d & =4
\end{array}\right\}\left[\begin{array}{llll|l}
1 & 1 & 0 & 0 & 3 \\
1 & 2 & 0 & 0 & 2 \\
0 & 0 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 \\
2
\end{array}\right]
$$

ANSWER: \qquad
[8 points] (b) Let \mathbb{B} be a 2×2 real matrix which has eigenvalue $2+3 i$ with corresponding eigenvector $\left[\begin{array}{c}1 \\ 1+4 i\end{array}\right]$. Write down the general solution to $\hat{x}^{\prime}=\mathbb{B} \hat{x}$ where the independent variable is time t. Please make sure that the two basis solutions used in the final form of your general solution are real valued quantities.

$$
\left.\begin{array}{l}
(\cos 3 t+i \sin 3 t)\left[\begin{array}{c}
1 \\
1+4 i
\end{array}\right]=\left[\begin{array}{c}
\cos 3 t+i \sin 3 t \\
\cos 3 t+i \sin 3 t+4 i \cos 3 t-4 \sin 3 t
\end{array}\right] \\
\cos 3 t-4 \sin 3 t
\end{array}\right]+i\left[\begin{array}{c}
\sin 3 t \\
\sin 3 t+4 \cos 3 t
\end{array}\right] \quad\left[\begin{array}{c}
2 t \\
\left.\vec{x}=e^{2 t}\left[\begin{array}{c}
\cos 3 t \\
\cos 3 t-4 \sin 3 t
\end{array}\right]+c_{2}\left[\begin{array}{c}
\sin 3 t \\
\sin 3 t+4 \cos 3 t
\end{array}\right]\right)
\end{array}\right.
$$

\qquad
6. (17 pts) Consider the second order linear ODE:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

[5 points] (a) Rewrite this as a homogeneous linear system of first order ODEs: $\hat{x}^{\prime}=\mathbb{A} \hat{x}$. Describe your choice of \hat{x} and \mathbb{A} explicitly.

$$
\begin{array}{lll}
x_{1}=y & \text { Ta } \\
x_{2}=y_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-6 x_{1}-5 x_{2}
\end{array} \quad \overrightarrow{x^{\prime}}=\left[\begin{array}{c}
0 \\
-6 \\
-5
\end{array}\right] \vec{x}
$$

ANSWER:

\qquad
[9 points] (b) Find the eigenvalues and corresponding eigenvectors of your matrix \mathbb{A} from part (a). This seems fariliar.

$$
=-2,-3 \text { eigenvalues. }
$$

ANSWER:

[3 points] (c) Write down the general solution to the system, ie., the general solution for \hat{x}.

ANSWER: \qquad

$$
\begin{aligned}
& \begin{array}{l}
\text { We can use } 04 \\
\text { with } c=6+b=5 \\
\text { as lar as } 5>2 \sqrt{6} \text {. }
\end{array} \\
& \text { Since } 6=\frac{24}{4}<\frac{25}{4} \text {, th. } 5.3 \text { true. } \\
& \text { Th solution we gave was } \left.\vec{x}(t)=c_{1} e^{\left(-\frac{b+\sqrt{b^{2} x^{2}}}{2}\right.}\right) t\left[\begin{array}{c}
2 \\
-b+\sqrt{b^{2}-4 c}
\end{array}\right]+c_{2} e^{\left(-\frac{b-\sqrt{b^{2}-4 c}}{2}\right) t}\left[\begin{array}{c}
2 \\
\left.-b-\sqrt{b^{2}-4 c}\right]
\end{array}\right] \\
& \frac{-b \pm \sqrt{b^{2}-y_{c}}}{2}=\frac{-5 \pm \sqrt{25-24}}{2}=\frac{-5+1}{2}, \frac{-5-1}{2}
\end{aligned}
$$

