MATH 165

Final Exam December 16, 2018

NAME (please print legibly): _____

Your University ID Number: ____

Honor Pledge: "I affirm that I did not provide or receive any unapproved assistance during this exam." Sign here:

Circle your Instructor's Name along with the Lecture Time:

Jonathan Pakianathan (TR 2) Rufei Ren (MW 2) Kazuo Yamazaki (MW 12:30) Ustun Yildirim (MW 9)

- No notes, books, calculators or other electronics are allowed on this exam.
- Please SHOW ALL your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

Part A			
QUESTION	VALUE	SCORE	
1	22		
2	15		
3	15		
4	18		
5	15		
6	15		
TOTAL	100		

Part B			
QUESTION	VALUE	SCORE	
1	17		
2	16		
3	17		
4	17		
5	16		
6	17		
TOTAL	100		

Part A 1. (22 pts)

 $\left[11 \text{ points}\right]$ (a) Find the solution to the differential equation

$$x\ln(x)y' - y^2 = 1$$

which satisfies the initial condition y(e) = 1.

[11 points] (b) Find the general solution of the differential equation $xy' - 3y = x^8$.

2. (15 pts)

Use Gauss-Jordan reduction to find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ -2 & -2 & 5 \end{bmatrix}$$

if it exists.

3. (15 pts) Consider a system of linear equations expressed as $A\mathbf{x} = \mathbf{b}$ where A is a $m \times n$ matrix. Let $A^{\#}$ denote the augmented matrix for the system, r = rank(A) and $r^{\#} = rank(A^{\#})$. In each of the following cases, what can be said about the number of solutions? (Circle only one of the choices in each part.)

- 1. If $r = r^{\#}$, then the system
 - (a) is inconsistent.
 - (b) has a unique solution.
 - (c) has infinitely many solutions.
 - (d) Further information is necessary to determine which of (a), (b) or (c) occur.
- 2. If $r < r^{\#}$, then the system
 - (a) is inconsistent.
 - (b) has a unique solution.
 - (c) has infinitely many solutions.
 - (d) Further information is necessary to determine which of (a), (b) or (c) occur.
- 3. If m = n and r = m, then the system
 - (a) is inconsistent.
 - (b) has a unique solution.
 - (c) has infinitely many solutions.
 - (d) Further information is necessary to determine which of (a), (b) or (c) occur.
- 4. If $m = n, \mathbf{b} = \mathbf{0}$, and r < m, then the system
 - (a) is inconsistent.
 - (b) has a unique solution.
 - (c) has infinitely many solutions.
 - (d) Further information is necessary to determine which of (a), (b) or (c) occur.
- 5. If m < n and $\mathbf{b} \neq \mathbf{0}$, then the system
 - (a) is inconsistent.
 - (b) has a unique solution.
 - (c) has infinitely many solutions.
 - (d) Further information is necessary to determine which of (a), (b) or (c) occur.

4. (18 pts)

[8 points] (a) Find the determinant of

$$M = \begin{pmatrix} 3 & 2 & 0 \\ 5 & 2 & 1 \\ -1 & 7 & 0 \end{pmatrix}$$

ANSWER: ____

[10 points] (b) Suppose A is a 4×4 matrix with det(A) = 2 and B is obtained from A by adding 5 times row 2 to row 3. Then:

$\det(3A) = _$	-
$\det(A^T) =$	_
i) $\det(A^{-1}) =$	
$det(A^3) = $	
$\det(B) =$	

5. (15 pts) Determine which of the following subsets of \mathbb{P}_3 are subspaces of \mathbb{P}_3 . (\mathbb{P}_3 is the vector space of real polynomials of degree 3 or less.) For each subset, circle NO if it is not a subspace and list a subspace property that fails for this subset in the provided slot. Circle YES if it is a subspace and in this case find and enter the dimension of this subspace in the slot provided.

(a)
$$S_1 = \{p(t) \in P_3 \mid p'(t) + 2p(t) + 7 = 0 \text{ for all } t\}$$

NO it is not a subspace. A subspace property that fails to hold is ______YES it is a subspace and its dimension is _____

(b)
$$S_2 = \{p(t) \in P_3 \mid p(-t) = p(t) \text{ for all } t\}$$

(c) $S_3 = \{ p(t) \in P_3 \mid p(0) = 1 \}$

NO it is not a subspace. A subspace property that fails to hold is ______YES it is a subspace and its dimension is _____

(d) $S_4 = \{ p(t) \in P_3 \mid p'''(t) = 0 \text{ for all } t \}$

NO it is not a subspace. A subspace property that fails to hold is ______ YES it is a subspace and its dimension is _____

(e) $S_5 = \{ p(t) \in P_3 \mid p'(3) = p(1) \}$

NO it is not a subspace. A subspace property that fails to hold is ______ YES it is a subspace and its dimension is _____

6. (15 pts)

is

The reduced row echelon form of

$$A = \begin{pmatrix} 3 & -6 & 1 & 3 & 0 \\ 2 & -4 & 1 & -1 & 0 \\ 3 & -6 & 0 & 12 & 1 \end{pmatrix}$$
$$U = \begin{pmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

[3 points] (a) The rank of A is

ANSWER: _____

[3 points] (b) The nullity of A is

ANSWER: _____

[3 points] (c) List a set of basis vectors for the column space of A.

ANSWER: _____

[3 points] (d) List a set of basis vectors for the null space of A.

ANSWER: _____

[3 points] (e) Give an example of a nontrivial linear dependency amongst the columns of A.

Part B1. (17 pts) For the differential equation

$$(D^2 + 1)^2 (D + 2)y = x,$$

 $\left[7 \text{ points}\right]$ (a) Find the general solution y_c to its associated homogeneous differential equation.

ANSWER: _____

[7 points](b) Find a particular solution y_p to the differential equation.

ANSWER: _____

[3 points](c) Determine the general solution to the differential equation.

2. (16 pts) Consider the 3×3 matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$

[4 points] (a) Determine the eigenvalues of A.

ANSWER: _____

[8 points] (b) Determine the eigenspaces corresponding to each of the eigenvalues of A.

ANSWER: _____

[4 points] (c) Determine if A is defective. Justify your answer.

3. (17 pts) Solve the initial value problem

$$y'' + 2y' + 5y = 0$$

with y(0) = 1, y'(0) = 2.

4. (17 pts) The motion of a certain physical system is described by

$$\begin{array}{rcl} x_1' &=& x_2 \\ x_2' &=& -cx_1 - bx_2 \end{array}$$

where b > 0, c > 0 and $b > 2\sqrt{c}$ and the independent variable is time t. [13 points] (a) Find the general solution for x_1 and x_2 .

ANSWER: _

^{[4} points] (b) What happens to the general solution in (a) as $t \to \infty$? Does it blow up or approach a certain limit? Justify your answer carefully.

5. (16 pts)

[8 points] (a) Suppose a system $\hat{x}' = \mathbb{A}\hat{x}$ where \mathbb{A} is a 2 × 2 matrix has general solution

$$\hat{x} = C_1 e^{3t} \begin{bmatrix} 1\\1 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1\\2 \end{bmatrix}.$$

Find \mathbb{A} .

ANSWER: _____

[8 points] (b) Let \mathbb{B} be a 2 × 2 real matrix which has eigenvalue 2 + 3*i* with corresponding eigenvector $\begin{bmatrix} 1\\ 1+4i \end{bmatrix}$. Write down the general solution to $\hat{x}' = \mathbb{B}\hat{x}$ where the independent variable is time *t*. Please make sure that the two basis solutions used in the final form of your general solution are real valued quantities.

6. (17 pts) Consider the second order linear ODE:

$$y'' + 5y' + 6y = 0.$$

[5 points] (a) Rewrite this as a homogeneous linear system of first order ODEs: $\hat{x}' = \mathbb{A}\hat{x}$. Describe your choice of \hat{x} and \mathbb{A} explicitly.

ANSWER: _____

[9 points] (b) Find the eigenvalues and corresponding eigenvectors of your matrix \mathbb{A} from part (a).

ANSWER: _____

[3 points] (c) Write down the general solution to the system, i.e., the general solution for \hat{x} .