MATH 165

Final Exam

December 16, 2018

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Honor Pledge: "I affirm that I did not provide or receive any unapproved assistance during this exam." Sign here:
Circle your Instructor's Name along with the Lecture Time:

> Jonathan Pakianathan (TR 2) \quad Rufei Ren (MW 2)
> Kazuo Yamazaki (MW 12:30) \quad Ustun Yildirim (MW 9)

- No notes, books, calculators or other electronics are allowed on this exam.
- Please SHOW ALL your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your simplified final answers in the spaces provided.

Part A		
QUESTION	VALUE	SCORE
1	22	
2	15	
3	15	
4	18	
5	15	
6	15	
TOTAL	100	

Part B		
QUESTION	VALUE	SCORE
1	17	
2	16	
3	17	
4	17	
5	16	
6	17	
TOTAL	100	

Part A

1. (22 pts)
[11 points] (a) Find the solution to the differential equation

$$
x \ln (x) y^{\prime}-y^{2}=1
$$

which satisfies the initial condition $y(e)=1$.
[11 points] (b) Find the general solution of the differential equation $x y^{\prime}-3 y=x^{8}$.

ANSWER:

2. (15 pts)

Use Gauss-Jordan reduction to find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
-2 & -2 & 5
\end{array}\right]
$$

if it exists.
3. ($\mathbf{1 5} \mathbf{p t s}$) Consider a system of linear equations expressed as $\mathbb{A} \mathbf{x}=\mathbf{b}$ where \mathbb{A} is a $m \times n$ matrix. Let $\mathbb{A}^{\#}$ denote the augmented matrix for the system, $r=\operatorname{rank}(\mathbb{A})$ and $r^{\#}=\operatorname{rank}\left(\mathbb{A}^{\#}\right)$. In each of the following cases, what can be said about the number of solutions? (Circle only one of the choices in each part.)

1. If $r=r^{\#}$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
2. If $r<r^{\#}$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
3. If $m=n$ and $r=m$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
4. If $m=n, \mathbf{b}=\mathbf{0}$, and $r<m$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.
5. If $m<n$ and $\mathbf{b} \neq \mathbf{0}$, then the system
(a) is inconsistent.
(b) has a unique solution.
(c) has infinitely many solutions.
(d) Further information is necessary to determine which of (a), (b) or (c) occur.

4. (18 pts)

[8 points] (a) Find the determinant of

$$
M=\left(\begin{array}{ccc}
3 & 2 & 0 \\
5 & 2 & 1 \\
-1 & 7 & 0
\end{array}\right)
$$

ANSWER:
[10 points] (b) Suppose A is a 4×4 matrix with $\operatorname{det}(A)=2$ and B is obtained from A by adding 5 times row 2 to row 3 . Then:
(i) $\operatorname{det}(3 A)=$ \qquad
(ii) $\operatorname{det}\left(A^{T}\right)=$ \qquad
(iii) $\operatorname{det}\left(A^{-1}\right)=$ \qquad
(iv) $\operatorname{det}\left(A^{3}\right)=$ \qquad
(v) $\operatorname{det}(B)=$
5. (15 pts) Determine which of the following subsets of \mathbb{P}_{3} are subspaces of \mathbb{P}_{3}. $\left(\mathbb{P}_{3}\right.$ is the vector space of real polynomials of degree 3 or less.) For each subset, circle NO if it is not a subspace and list a subspace property that fails for this subset in the provided slot. Circle YES if it is a subspace and in this case find and enter the dimension of this subspace in the slot provided.
(a) $S_{1}=\left\{p(t) \in P_{3} \mid p^{\prime}(t)+2 p(t)+7=0\right.$ for all $\left.t\right\}$

NO it is not a subspace. A subspace property that fails to hold is \qquad YES it is a subspace and its dimension is \qquad
(b) $S_{2}=\left\{p(t) \in P_{3} \mid p(-t)=p(t)\right.$ for all $\left.t\right\}$

NO it is not a subspace. A subspace property that fails to hold is \qquad YES it is a subspace and its dimension is \qquad
(c) $S_{3}=\left\{p(t) \in P_{3} \mid p(0)=1\right\}$

NO it is not a subspace. A subspace property that fails to hold is \qquad YES it is a subspace and its dimension is \qquad -
(d) $S_{4}=\left\{p(t) \in P_{3} \mid p^{\prime \prime \prime}(t)=0\right.$ for all $\left.t\right\}$

NO it is not a subspace. A subspace property that fails to hold is \qquad YES it is a subspace and its dimension is \qquad -
(e) $S_{5}=\left\{p(t) \in P_{3} \mid p^{\prime}(3)=p(1)\right\}$

NO it is not a subspace. A subspace property that fails to hold is \qquad YES it is a subspace and its dimension is \qquad

6. (15 pts)

The reduced row echelon form of

$$
A=\left(\begin{array}{ccccc}
3 & -6 & 1 & 3 & 0 \\
2 & -4 & 1 & -1 & 0 \\
3 & -6 & 0 & 12 & 1
\end{array}\right)
$$

is

$$
U=\left(\begin{array}{ccccc}
1 & -2 & 0 & 4 & 0 \\
0 & 0 & 1 & -9 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

[3 points] (a) The rank of A is

ANSWER:
[3 points] (b) The nullity of A is

ANSWER: \qquad
[3 points] (c) List a set of basis vectors for the column space of A.

ANSWER:
[3 points] (d) List a set of basis vectors for the null space of A.

ANSWER: \qquad
[3 points] (e) Give an example of a nontrivial linear dependency amongst the columns of A.

ANSWER: \qquad

Part B

1. ($\mathbf{1 7} \mathrm{pts})$ For the differential equation

$$
\left(D^{2}+1\right)^{2}(D+2) y=x
$$

[7 points] (a) Find the general solution y_{c} to its associated homogeneous differential equation.

ANSWER: \qquad
[7 points](b) Find a particular solution y_{p} to the differential equation.

ANSWER:
[3 points](c) Determine the general solution to the differential equation.

ANSWER: \qquad
2. ($\mathbf{1 6}$ pts) Consider the 3×3 matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]
$$

[4 points] (a) Determine the eigenvalues of A.

ANSWER:

[8 points] (b) Determine the eigenspaces corresponding to each of the eigenvalues of A.

ANSWER:

[4 points] (c) Determine if A is defective. Justify your answer.
3. (17 pts) Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

with $y(0)=1, y^{\prime}(0)=2$.
4. ($\mathbf{1 7} \mathrm{pts}$) The motion of a certain physical system is described by

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-c x_{1}-b x_{2}
\end{aligned}
$$

where $b>0, c>0$ and $b>2 \sqrt{c}$ and the independent variable is time t.
[13 points] (a) Find the general solution for x_{1} and x_{2}.

ANSWER:
[4 points] (b) What happens to the general solution in (a) as $t \rightarrow \infty$? Does it blow up or approach a certain limit? Justify your answer carefully.

ANSWER:

5. (16 pts)

[8 points] (a) Suppose a system $\hat{x}^{\prime}=\mathbb{A} \hat{x}$ where \mathbb{A} is a 2×2 matrix has general solution

$$
\hat{x}=C_{1} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Find \mathbb{A}.

ANSWER:
[8 points] (b) Let \mathbb{B} be a 2×2 real matrix which has eigenvalue $2+3 i$ with corresponding eigenvector $\left[\begin{array}{c}1 \\ 1+4 i\end{array}\right]$. Write down the general solution to $\hat{x}^{\prime}=\mathbb{B} \hat{x}$ where the independent variable is time t. Please make sure that the two basis solutions used in the final form of your general solution are real valued quantities.
\qquad
6. (17 pts) Consider the second order linear ODE:

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0 .
$$

[5 points] (a) Rewrite this as a homogeneous linear system of first order ODEs: $\hat{x}^{\prime}=\mathbb{A} \hat{x}$. Describe your choice of \hat{x} and \mathbb{A} explicitly.

ANSWER:

[9 points] (b) Find the eigenvalues and corresponding eigenvectors of your matrix \mathbb{A} from part (a).

ANSWER: \qquad
[3 points] (c) Write down the general solution to the system, i.e., the general solution for \hat{x}.

ANSWER \qquad

