
 SECTION 16.1  Vector Fields 1129

EXAMPLE 6 Find the gradient vector field of f sx, yd − x 2 y 2 y 3. Plot the gradient 
vector field together with a contour map of f . How are they related?

SOLUTION The gradient vector field is given by

= f sx, yd −
−f
−x

 i 1
−f
−y

 j− 2xy i 1 sx 2 2 3y 2 d j

Figure 15 shows a contour map of f  with the gradient vector field. Notice that the 
gradient vectors are perpendicular to the level curves, as we would expect from 
Section 14.6. Notice also that the gradient vectors are long where the level curves are 
close to each other and short where the curves are farther apart. That’s because the 
length of the gradient vector is the value of the directional derivative of f  and closely 
spaced level curves indicate a steep graph. n

A vector field F is called a conservative vector field if it is the gradient of some sca-
lar function, that is, if there exists a function f  such that F − = f . In this situation f  is 
called a potential function for F.

Not all vector fields are conservative, but such fields do arise frequently in physics. 
For example, the gravitational field F in Example 4 is conservative because if we define

f sx, y, zd −
mMG

sx 2 1 y 2 1 z 2 

then

 = f sx, y, zd −
−f
−x

 i 1
−f
−y

 j1
−f
−z

 k

 −
2mMGx

sx 2 1 y 2 1 z 2 d3y2  i 1
2mMGy

sx 2 1 y 2 1 z 2 d3y2  j1
2mMGz

sx 2 1 y 2 1 z 2 d3y2  k

 − Fsx, y, zd

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is 
conservative.

4

_4

_4 4

FIGURE 15

16.1 Exercises
1–12 Sketch the vector field F by drawing a diagram like  
Fig ure 5 or Figure 9.

 1. Fsx, yd − i 1 1
2 j

 2. Fsx, yd − 2 i 2 j

 3. Fsx, yd − i 1 1
2 y j

 4. Fsx, yd − x i 1 1
2 y j

 5. Fsx, yd − 21
2 i 1 sy 2 xd j

 6. Fsx, yd − y i 1 sx 1 yd j

 7. Fsx, yd −
y i 1 x j

sx 2 1 y 2 

 8. Fsx, yd −
y i 2 x j

sx 2 1 y 2 

 9. Fsx, y, zd − i

 10. Fsx, y, zd − z i

 11. Fsx, y, zd − 2y i

 12. Fsx, y, zd − i 1 k
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1130 CHAPTER 16  Vector Calculus

13–18 Match the vector fields F with the plots labeled I–VI.  
Give reasons for your choices.

 13. Fsx, yd − kx, 2yl

 14. Fsx, yd − ky, x 2 yl

 15. Fsx, yd − ky, y 1 2l

 16. Fsx, yd − k y, 2xl

 17. Fsx, yd − ksin y, cos xl

 18. Fsx, yd − kcossx 1 yd, xl

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

I II

III

3

_3

_3 3

3

_3

_3 3

V VI

3

_3

_3 3

IV

19–22 Match the vector fields F on R3 with the plots labeled  
I–IV. Give reasons for your choices.

 19. Fsx, y, zd − i 1 2 j1 3 k

 20. Fsx, y, zd − i 1 2 j1 z k

 21. Fsx, y, zd − x i 1 y j1 3 k

 22. Fsx, y, zd − x i 1 y j1 z k

z
1
0

_1

y 10_1 x1 0 _1

z
1
0

_1

y 10_1 x1 0 _1

0y 1_1 x1 0 _1

z
1
0

_1

z
1
0

_1

y 10_1 1 0 _1
x

I II

III IV

 23.  Use graphing software to plot the vector field

Fsx, yd − sy 2 2 2xyd i 1 s3xy 2 6x 2 d j

Explain the appearance by finding the set of points sx, yd  
such that Fsx, yd − 0.

 24.  Let Fsxd − sr 2 2 2rdx, where x − kx, yl and r − | x |. Use 
graphing software to plot this vector field in various domains 
until you can see what is happening. Describe the appearance 
of the plot and explain it by finding the points where 
Fsxd − 0.

25–28 Find the gradient vector field = f  of f .

 25. f sx, yd − y sinsxyd

 26. f ss, td − s2s 1 3t 

 27. f sx, y, zd − sx 2 1 y 2 1 z 2 

 28. f sx, y, zd − x 2ye yyz

29–30 Find the gradient vector field = f  of f  and sketch it.

 29. f sx, yd − 1
2sx 2 yd2

 30. f sx, yd − 1
2sx 2 2 y 2d

31–34 Match the functions f  with the plots of their gradient  
vector fields labeled I–IV. Give reasons for your choices.

 31. f sx, yd − x 2 1 y 2

 32. f sx, yd − xsx 1 yd

;

;
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 SECTION 16.2  Line Integrals 1131

 37.  A particle moves in a velocity field Vsx, yd − kx 2, x 1 y 2l.  
If it is at position s2, 1d at time t − 3, estimate its location at 
time t − 3.01.

 38.  At time t − 1, a particle is located at position s1, 3d. If it 
moves in a velocity field 

Fsx, yd − kxy 2 2, y 2 2 10l

find its approximate location at time t − 1.05.

39– 40 Flow Lines The flow lines (or streamlines) of a vector 
field are the paths followed by a particle whose velocity field is 
the given vector field. Thus the vectors in a vector field are 
tangent to the flow lines.

 39. (a)  Use a sketch of the vector field Fsx, yd − x i 2 y j to 
draw some flow lines. From your sketches, can you 
guess the equations of the flow lines?

 (b)  If parametric equations of a flow line are x − xstd, 
y − ystd, explain why these functions satisfy the 
differential equa tions dxydt − x and dyydt − 2y. Then 
solve the differential equations to find an equation of 
the flow line that passes through the point (1, 1).

 40. (a)  Sketch the vector field Fsx, yd − i 1 x j and then 
sketch some flow lines. What shape do these flow lines 
appear to have?

 (b)  If parametric equations of the flow lines are x − xstd, 
y − ystd, what differential equations do these functions  
satisfy? Deduce that dyydx − x.

 (c)  If a particle starts at the origin in the velocity field given 
by F, find an equation of the path it follows.

 33. f sx, yd − sx 1 yd2 34. f sx, yd − sinsx 2 1 y 2 
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35–36 Plot the gradient vector field of f  together with a contour 
map of f . Explain how they are related to each other.

 35. f sx, yd − lns1 1 x 2 1 2y 2d

 36. f sx, yd − cos x 2 2 sin y

;

Line Integrals

In this section we define an integral that is similar to a single integral except that instead 
of integrating over an interval fa, bg, we integrate over a curve C. Such integrals are 
called line integrals, although “curve integrals” would be better terminology. They were 
invented in the early 19th century to solve problems involving fluid flow, forces, electric-
ity, and magnetism.

■ Line Integrals in the Plane
We start with a plane curve C given by the parametric equations

1  x − xstd    y − ystd    a < t < b 

or, equivalently, by the vector equation rstd − xstd i 1 ystd j, and we assume that C is a 
smooth curve. [This means that r9 is continuous and r9std ± 0. See Section 13.3.] If we 
divide the parameter interval fa, bg into n subintervals fti21, tig of equal width and we let 
xi − xstid and yi − ystid, then the corresponding points Pi sxi, yi d divide C into n subarcs 
with lengths Ds1, Ds2, . . . , Dsn. (See Figure 1.) We choose any point Pi*sxi*, yi*d in the ith 
subarc. (This corresponds to a point ti* in fti21, tig.) Now if f  is any function of two 

16.2

t i-1

P¸
P¡
P™

C

a b

x0

y

t
t i

t*i

Pi-1 Pi

Pn

P*i (x*i , y*i )

FIGURE 1
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 SECTION 16.2  Line Integrals 1141

But this last integral is precisely the line integral in (10). Therefore we have

y
C
 F ! dr − y

C
 P dx 1 Q dy 1 R dz    where F − P i 1 Q j1 R k

For example, the integral yC y dx 1 z dy 1 x dz in Example 6 could be expressed as 
yC F ! dr, where

Fsx, y, zd − y i 1 z j1 x k

A similar result holds for vector fields F on R2:

14  y
C
 F ! dr − y

C
 P dx 1 Q dy

where F − P i 1 Q j.

16.2 Exercises
1–8 Evaluate the line integral, where C is the given plane curve.

 1. yC y ds, C: x − t 2, y − 2t, 0 < t < 3

 2. yC sxyyd ds, C: x − t 3, y − t 4, 1 < t < 2

 3. yC xy 4 ds,  C is the right half of the circle x 2 1 y 2 − 16

 4. yC xe y ds,  C is the line segment from s2, 0d to s5, 4d

 5. yC sx 2y 1 sin xd dy, 
C is the arc of the parabola y − x 2 from s0, 0d to s!, ! 2d

 6. yC e x dx,  
 C is the arc of the curve x − y 3 from s21, 21d to s1, 1d 

 7.  yC sx 1 2yd  dx 1 x 2 dy

0

y

x

C
(2, 1)

(3, 0)

 8.  yC x 2 dx 1 y 2 dy

≈+¥=4

0

y

x

C

(2, 0)

(0, 2)

(_1, 1)

9–18 Evaluate the line integral, where C is the given space curve.

 9.  yC x 2y ds,  
C: x − cos t, y − sin t, z − t, 0 < t < !y2

 10.  yC y 2z ds,  
C is the line segment from s3, 1, 2d to s1, 2, 5d

 11.  yC xe yz ds,   
C is the line segment from (0, 0, 0) to (1, 2, 3)

 12.  yC sx 2 1 y 2 1 z2d ds,   
C: x − t, y − cos 2t, z − sin 2t, 0 < t < 2!

 13. yC xye yz dy,  C: x − t, y − t 2, z − t 3, 0 < t < 1

 14.  yC ye z dz 1 x ln x dy 2 y dx,  
C: x − e t, y − 2t, z − ln t, 1 < t < 2

 15.  yC z dx 1 xy dy 1 y 2 dz,  
C: x − sin t, y − cos t, z − tan t, 2!y4 < t < !y4

 16. yC y dx 1 z dy 1 x dz,   
 C: x − st  , y − t, z − t 2, 1 < t < 4

 17.  yC z2 dx 1 x 2 dy 1 y 2 dz,   
C is the line segment from s1, 0, 0d to s4, 1, 2d

 18.  yC sy 1 zd dx 1 sx 1 zd dy 1 sx 1 yd dz,   
C consists of line segments from s0, 0, 0d to s1, 0, 1d and from 
s1, 0, 1d to s0, 1, 2d
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1142 CHAPTER 16  Vector Calculus

 19.  Let F be the vector field shown in the figure.
 (a)  If C1 is the vertical line segment from s23, 23d to 

s23, 3d, determine whether yC1
 F ! dr is positive,  

negative, or zero.
 (b)  If C2 is the counterclockwise-oriented circle with  

radius 3 and center the origin, determine whether 
yC2

 F ! dr is positive, negative, or zero.

y

x0 1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

 20.  The figure shows a vector field F and two curves C1 and C2. 
Are the line integrals of F over C1 and C2 positive, negative,  
or zero? Explain.

y

x

C¡
C™

21–24 Evaluate the line integral yC F ! dr, where C is given by 
the vector function rstd.

 21.  Fsx, yd − xy 2 i 2 x 2 j,   
rstd − t 3 i 1 t 2 j,  0 < t < 1

 22.  Fsx, y, zd − sx 1 y 2d i 1 xz j1 sy 1 zd k,   
rstd − t 2 i 1 t 3 j2 2t k,  0 < t < 2

 23.  Fsx, y, zd − sin x i 1 cos y j1 xz k, 
rstd − t 3 i 2 t 2 j1 t k,  0 < t < 1

 24.  Fsx, y, zd − xz i 1 z 3 j1 y k , 
rstd − e t i 1 e 2 t j1 e2t k,  21 < t < 1

25–28 Use a calculator or computer to evaluate the line integral 
correct to four decimal places.

 25.  yC F ! dr, where Fsx, yd − sx 1 y  i 1 syyxd j and  
rstd − sin2 t i 1 sin t cos t j, !y6 < t < !y3

 26.  yC F ! dr, where Fsx, y, zd − yze x i 1 zxe y j1 xye z k and 
rstd − sin t i 1 cos t j1 tan t k, 0 < t < !y4

 27.  yC xy arctan z ds, where C has parametric equations  
x − t 2, y − t 3, z − st

  

, 1 < t < 2

 28.  yC z lnsx 1 yd ds, where C has parametric equations  
x − 1 1 3t, y − 2 1 t 2, z − t 4, 21 < t < 1

29–30 Use a graph of the vector field F and the curve C to 
guess whether the line integral of F over C is positive, negative, 
or zero. Then evaluate the line integral.

 29.  Fsx, yd − sx 2 yd i 1 xy j, 
C is the arc of the circle x 2 1 y 2 − 4 traversed counter-
clockwise from (2, 0) to s0, 22d

 30.  Fsx, yd −
x

sx 2 1 y 2 
 i 1

y

sx 2 1 y 2 
 j,

  C is the parabola y − 1 1 x 2 from s21, 2d to (1, 2)

 31. (a)  Evaluate the line integral yC F ! dr, where 
Fsx, yd − e x21 i 1 xy j and C is given by  
rstd − t 2 i 1 t 3 j, 0 < t < 1.

 (b)  Illustrate part (a) by graphing C and the vectors from 
the vector field corresponding to t − 0, 1ys2 , and 1  
(as in Figure 14).

 32. (a)  Evaluate the line integral yC F ! dr, where 
Fsx, y, zd − x i 2 z j1 y k and C is given by 
rstd − 2t i 1 3t j2 t 2 k, 21 < t < 1.

 (b)  Illustrate part (a) by graphing C and the vectors from 
the vector field corresponding to t − 61 and 6 

1
2 (as in 

Figure 14).

 33. Use a computer algebra system to find the exact value of 
yC x 3y 2z ds, where C is the curve with parametric equations 
x − e2t cos 4 t, y − e2t sin 4 t, z − e2t, 0 < t < 2!.

 34. (a)  Find the work done by the force field 
Fsx, yd − x 2 i 1 xy j on a particle that moves once 
around the circle x 2 1 y 2 − 4 oriented in the counter-
clockwise direction.

 (b)  Graph the force field and circle on the same screen. Use 
the graph to explain your answer to part (a).

 35.  A thin wire is bent into the shape of a semicircle 
x 2 1 y 2 − 4, x > 0. If the linear density is a constant k, 
find the mass and center of mass of the wire.

 36.  A thin wire has the shape of the first-quadrant portion of the  
circle with center the origin and radius a. If the density  
function is "sx, yd − kxy, find the mass and center of mass  
of the wire.

 37. (a)  Write the formulas similar to Equations 4 for the center 
of mass sx, y, z d of a thin wire in the shape of a space 
curve C if the wire has density function "sx, y, zd.

;

;

;

;
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 SECTION 16.2  Line Integrals 1143

 47.  A 160-lb man carries a 25-lb can of paint up a helical stair-
case that encircles a silo with a radius of 20 ft. If the silo is 
90 ft high and the man makes exactly three complete revolu-
tions climbing to the top, how much work is done by the man 
against gravity?

 48.  Suppose there is a hole in the can of paint in Exercise 47 and  
9 lb of paint leaks steadily out of the can during the man’s 
ascent. How much work is done?

 49. (a)  Show that a constant force field does zero work on a  
particle that moves once uniformly around the circle 
x 2 1 y 2 − 1.

 (b)  Is this also true for a force field Fsxd − kx, where k is a 
constant and x − kx, yl?

 50.  The base of a circular fence with radius 10 m is given by 
x − 10 cos t, y − 10 sin t. The height of the fence at position 
sx, yd is given by the function hsx, yd − 4 1 0.01sx 2 2 y 2d, 
so the height varies from 3 m to 5 m. Suppose that 1 L of 
paint covers 100 m2. Sketch the fence and determine how 
much paint you will need if you paint both sides of the fence.

 51.  If C is a smooth curve given by a vector function rstd, 
a < t < b, and v is a constant vector, show that

y
C
 v ! dr − v ! frsbd 2 rsadg

 52.  If C is a smooth curve given by a vector function rstd, 
a < t < b, show that

y
C
 r ! d r − 1

2f|  

rsbd |2 2 |  rsad |2g
 53.  An object moves along the curve C shown in the figure from 

(1, 2) to (9, 8). The lengths of the vectors in the force field F 
are measured in newtons by the scales on the axes. Estimate 
the work done by F on the object.

0 1

1

y (meters)

x (meters)

C

C

 54.  Experiments show that a steady current I in a long wire pro-
duces a magnetic field B that is tangent to any circle that lies 
in the plane perpendicular to the wire and whose center is the 

 (b)  Find the center of mass of a wire in the shape of the 
helix x − 2 sin t, y − 2 cos t, z − 3t, 0 < t < 2!, if the 
density is a constant k.

 38.  Find the mass and center of mass of a wire in the shape of the 
helix x − t, y − cos t, z − sin t, 0 < t < 2!, if the density at 
any point is equal to the square of the distance from the origin.

 39.  If a wire with linear density "sx, yd lies along a plane curve C, 
its moments of inertia about the x- and y-axes are defined as

Ix − y
C
 y 2"sx, yd ds    Iy − y

C
 x 2"sx, yd ds

Find the moments of inertia for the wire in Example 3.

 40.  If a wire with linear density "sx, y, zd lies along a space curve 
C, its moments of inertia about the x-, y-, and z-axes are 
defined as

 Ix − y
C
 s y 2 1 z2 d"sx, y, zd ds

 Iy − y
C
 sx 2 1 z2 d"sx, y, zd ds

 Iz − y
C
 sx 2 1 y 2 d"sx, y, zd ds

  Find the moments of inertia for the wire in Exercise 37(b).

 41.  Find the work done by the force field

Fsx, yd − x i 1 s y 1 2d j

in moving an object along an arch of the cycloid

rstd − st 2 sin td i 1 s1 2 cos td j  0 < t < 2!

 42.  Find the work done by the force field Fsx, yd − x 2 i 1 ye x j 
on a particle that moves along the parabola x − y 2 1 1 from 
s1, 0d to s2, 1d.

 43.  Find the work done by the force field

Fsx, y, zd − kx 2 y 2, y 2 z2, z 2 x 2 l

on a particle that moves along the line segment from s0, 0, 1d 
to s2, 1, 0d.

 44.  The force exerted by an electric charge at the origin on a 
charged particle at a point sx, y, zd with position vector 
r − kx, y, z l is Fsrd − Kry| r |3 where K is a constant. (See 
Example 16.1.5.) Find the work done as the particle moves 
along a straight line from s2, 0, 0d to s2, 1, 5d.

 45.  The position of an object with mass m at time t is 
rstd − at 2 i 1 bt 3 j, 0 < t < 1.

 (a)  What is the force acting on the object at time t ?
 (b)  What is the work done by the force during the time  

interval 0 < t < 1?

 46.  An object with mass m moves with position function 
rstd − a sin t i 1 b cos t j1 ct k, 0 < t < !y2. Find the  
work done on the object during this time period.
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1144 CHAPTER 16  Vector Calculus

axis of the wire (as in the figure). Ampère’s Law relates the 
electric current to its magnetic effects and states that

y
C
 B ! dr − #0 I

where I is the net current that passes through any surface 
bounded by a closed curve C, and #0 is a constant called the 
permeability of free space. By taking C to be a circle with 
radius r, show that the magnitude B − | B | of the magnetic 
field at a distance r from the center of the wire is

B −
#0 I
2!r

B

I

The Fundamental Theorem for Line Integrals

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be writ-
ten as

1  yb

a
 F9sxd dx − Fsbd 2 Fsad 

where F9 is continuous on fa, bg. Equation 1 says that to evaluate the definite integral of 
F9 on fa, bg, we need only know the values of F at a and b, the endpoints of the interval. 
In this section we formulate a similar result for line integrals.

■ The Fundamental Theorem for Line Integrals
If we think of the gradient vector = f  of a function f  of two or three variables as a sort of 
derivative of f , then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

2  Theorem Let C be a smooth curve given by the vector function rstd,  
a < t < b. Let f  be a differentiable function of two or three variables whose gra-
dient vector = f  is continuous on C. Then

y
C
 = f ! dr − f srsbdd 2 f srsadd

NOTE 1 Theorem 2 says that we can evaluate the line integral of a conservative vector 
field (the gradient vector field of the potential function f ) simply by knowing the value of 
f  at the endpoints of C. In fact, Theorem 2 says that the line integral of = f  is the net 
change in f . If f  is a function of two variables and C is a plane curve with initial point 
Asx1, y1d and terminal point Bsx2, y2d, as in Figure 1(a), then Theorem 2 becomes

y
C
 = f ! dr − f sx2, y2d 2 f sx1, y1d

If f  is a function of three variables and C is a space curve joining the point Asx1, y1, z1 d 
to the point Bsx2, y2, z2 d, as in Figure 1(b), then we have

y
C
 = f ! dr − f sx2, y2, z2 d 2 f sx1, y1, z1 d

16.3

0

A(x¡, y¡) B(x™, y™)

C x

y

(a)

0

A(x¡, y¡, z¡)
B(x™, y™, z™)

C

y

z

x

(b)

FIGURE 1
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1151

So the work done by the force on the object is

 W − y
C
 F ! dr − yb

a
 Fsrstdd ! r9std dt − yb

a
 mr0std ! r9std dt

 −
m
2

 yb

a
 

d
dt

 fr9std ! r9stdg dt (Theorem 13.2.3, Formula 4)

 −
m
2

 yb

a
 

d
dt

 | r9std |2 dt −
m
2

 f| r9std |2ga

b
  (Fundamental Theorem of Calculus)

 −
m
2

 (| r9sbd |2 2 | r9sad |2 )

Therefore

15  W − 1
2 m | vsbd |2 2 1

2 m | vsad |2 

where v − r9 is the velocity.
The quantity 12 m | vstd |2, that is, half the mass times the square of the speed, is called 

the kinetic energy of the object. Therefore we can rewrite Equation 15 as

16  W − KsBd 2 KsAd 

which says that the work done by the force field along C is equal to the change in kinetic 
energy at the endpoints of C.

Now let’s further assume that F is a conservative force field; that is, we can write 
F − = f . In physics, the potential energy of an object at the point sx, y, zd is defined as 
Psx, y, zd − 2f sx, y, zd, so we have F − 2=P. Then by Theorem 2 we have

 W − y
C
 F ! dr − 2y

C
 =P ! dr − 2fPsrsbdd 2 Psrsaddg − PsAd 2 PsBd

Comparing this equation with Equation 16, we see that

PsAd 1 KsAd − PsBd 1 KsBd

which says that if an object moves from one point A to another point B under the influ-
ence of a conservative force field, then the sum of its potential energy and its kinetic 
energy remains constant. This is called the Law of Conservation of Energy and it is the 
reason the vector field is called conservative.

16.3 Exercises
 1.  The figure shows a curve C and a contour map of a function f  

whose gradient is continuous. Find yC = f ! dr.

y

x0

10
20

30
40

50
60

C

 2.  A table of values of a function f  with continuous gradient is 
given. Find yC = f ! dr, where C has parametric equations

x − t 2 1 1        y − t 3 1 t        0 < t < 1

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2
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1152 CHAPTER 16  Vector Calculus

3–10 Determine whether or not F is a conservative vector field.  
If it is, find a function f  such that F − = f .

 3. Fsx, yd − sxy 1 y 2d i 1 sx 2 1 2xyd j

 4. Fsx, yd − sy 2 2 2xd i 1 2xy j

 5. Fsx, yd − y 2e xy i 1 s1 1 xyde xy j

 6. Fsx, yd − ye x i 1 se x 1 e yd j

 7. Fsx, yd − sye x 1 sin yd i 1 se x 1 x cos yd j

 8. Fsx, yd − s2xy 1 y22d i 1 sx 2 2 2xy23d j,  y . 0

 9. Fsx, yd − sy 2 cos x 1 cos yd i 1 s2y sin x 2 x sin yd j

 10. Fsx, yd − sln y 1 yyxd i 1 sln x 1 xyyd j

 11.  The figure shows the vector field Fsx, yd − k2xy, x 2l and 
three curves that start at (1, 2) and end at (3, 2).

 (a)  Explain why yC F ! dr has the same value for all three 
curves.

 (b) What is this common value?

y

x0 3

3

2

1

21

 12.  Evaluate yC F ! dr for the vector field 
Fsx, yd − 2xy i 1 sx 2 1 sin yd j and the curve C  
shown.

 (a) (b)

x0

y
(2, π/2)

x0

y

1

C C

 13. Let Fsx, yd − s3x 2 1 y 2d i 1 2xy j and let C be the curve 
shown.

0

(2, 0)

C

x

y

(_2, 0)

y=_ œ„„„„„4-≈

 (a) Evaluate yC F ! dr directly.
 (b)  Show that F is conservative and find a function f  such 

that F − = f .
 (c) Evaluate yC F ! dr using Theorem 2.
 (d)  Evaluate yC F ! dr by first replacing C by a simpler curve 

that has the same initial and terminal points.

14 –15 A vector field F and a curve C are given.
(a) Show that F is conservative and find a potential function f.
(b) Evaluate yC F ! dr using Theorem 2.
(c) Evaluate yC F ! dr by first replacing C with a line segment that 

has the same initial and terminal points.

 14. Fsx, yd − ksin y 1 e x, x cos yl, 
  C: x − t, y − ts3 2 td, 0 < t < 3

 15. Fsx, yd − kye xy, xe xyl, 

  C: x − sin 
!

2
 t, y − e t21s1 2 cos !td, 0 < t < 1

 16.  Evaluate yC =f ! dr, where f sx, y, zd − xy 2z 1 x 2 and C is 
the curve x − t 2, y − e t 221, z − t 2 1 t, 21 < t < 1.

17–24 (a) Find a function f  such that F − = f  and (b) use  
part (a) to evaluate yC F ! dr along the given curve C.

 17. Fsx, yd − k2x, 4yl, 
  C is the arc of the parabola x − y 2 from s4, 22d to s1, 1d

 18.  Fsx, yd − s3 1 2xy 2d i 1 2x 2y j,
  C is the arc of the hyperbola y − 1yx from s1, 1d to (4, 14)

 19.  Fsx, yd − x 2y 3 i 1 x 3y 2 j,
  C: rstd − kt 3 2 2t, t 3 1 2tl,  0 < t < 1

 20.  Fsx, yd − s1 1 xyde xy i 1 x 2e xy j, 
C: rstd − cos t i 1 2 sin t j,  0 < t < !y2

 21.  Fsx, y, zd − 2xy i 1 sx 2 1 2yzd j1 y 2 k, 
C is the line segment from s2, 23, 1d to s25, 1, 2d

 22.  Fsx, y, zd − sy2z 1 2xz2d i 1 2xyz j1 sxy 2 1 2x 2zd k, 
C: x − st , y − t 1 1, z − t 2,  0 < t < 1
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1153

 35.  Show that if the vector field F − P i 1 Q j1 R k is con-
servative and P, Q, R have continuous first-order partial 
derivatives, then

−P
−y

−
−Q
−x

      
−P
−z

−
−R
−x

      
−Q
−z

−
−R
−y

 36.  Use Exercise 35 to show that the line integral 
yC y dx 1 x dy 1 xyz dz is not independent of path.

37–40 Determine whether or not the given set is (a) open,  
(b) connected, and (c) simply-connected.

 37. hsx, yd |  0 , y , 3j

 38. hsx, yd |  1 , | x | , 2j

 39. hsx, yd | 1 < x 2 1 y 2 < 4, y > 0j

 40. hsx, yd |  sx, yd ± s2, 3dj

 41. Let Fsx, yd −
2y i 1 x j

x 2 1 y 2 .

 (a) Show that −Py−y − −Qy−x.
 (b)  Show that yC F ! dr is not independent of path.  

[Hint: Compute y 
C1

 F ! dr and y 
C2

 F ! dr, where C1  
and C2 are the upper and lower halves of the circle 
x 2 1 y 2 − 1 from s1, 0d to s21, 0d.] Does this 
contradict Theorem 6?

 42. Inverse Square Fields Suppose that F is an inverse square 
force field, that is,

Fsrd −
cr

| r |3

   for some constant c, where r − x i 1 y j1 z k. 
 (a)  Find the work done by F in moving an object from a 

point P1 along a path to a point P2 in terms of the 
distances d1 and d2 from these points to the origin.

 (b)  An example of an inverse square field is the gravi- 
tational field F − 2smMG dry| r |3 discussed in  
Example 16.1.4. Use part (a) to find the work done  
by the gravitational field when the earth moves from  
aphelion (at a maximum distance of 1.52 3 108 km  
from the sun) to perihelion (at a minimum  
distance of 1.47 3 108 km). (Use the values  
m − 5.97 3 1024 kg, M − 1.99 3 1030 kg, and  
G − 6.67 3 10211 N ∙m2ykg2.d

 (c)  Another example of an inverse square field is the  
elec tric force field F − «qQry| r |3 discussed in  
Example 16.1.5. Suppose that an electron with a charge 
of 21.6 3 10219 C is located at the origin. A positive  
unit charge is positioned a distance 10212 m from the 
elec tron and moves to a position half that distance from 
the electron. Use part (a) to find the work done by the 
electric force field. (Use the value « − 8.985 3 10 9.)

 23.  Fsx, y, zd − yze xz i 1 e xz j1 xye xz k, 
C: rstd − st 2 1 1d i 1 st 2 2 1d j1 st 2 2 2td k,  
0 < t < 2

 24.  Fsx, y, zd − sin y  i 1 sx cos y 1 cos zd j2 y sin z k, 
C: rstd − sin t i 1 t  j1 2t  k,  0 < t < !y2

25–26 Show that the line integral is independent of path and 
evaluate the integral.

 25.  yC 2xe2y dx 1 s2y 2 x 2e2yd dy,  
C is any path from s1, 0d to s2, 1d

 26.  yC sin y dx 1 sx cos y 2 sin yd dy,   
C is any path from s2, 0d to s1, !d

 27.  Suppose you’re asked to determine the curve that requires 
the least work for a force field F to move a particle from 
one point to another point. You decide to check first whether 
F is conservative, and indeed it turns out that it is. How 
would you reply to the request?

 28.  Suppose an experiment determines that the amount of work 
required for a force field F to move a particle from the point 
s1, 2d to the point s5, 23d along a curve C1 is 1.2 J and the 
work done by F in moving the particle along another curve  
C2 between the same two points is 1.4 J. What can you say 
about F? Why?

29–30 Find the work done by the force field F in moving an 
object from P to Q.

 29. Fsx, yd − x 3 i 1 y 3 j; Ps1, 0d, Qs2, 2d

 30. Fsx, yd − s2x 1 yd i 1 x j; Ps1, 1d, Qs4, 3d

31–32 Is the vector field shown in the figure conservative? 
Explain.

 31.  32. y

x

y

x

 33.  If Fsx, yd − sin y i 1 s1 1 x cos yd j, use a plot to guess 
whether F is conservative. Then determine whether your 
guess is correct.

 34.  Let F − = f , where f sx, yd − sinsx 2 2yd. Find curves C1 
and C2 that are not closed and satisfy the equation.

 (a) y
C1

 F ! dr − 0 (b) y
C2

 F ! dr − 1

;
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 SECTION 16.4  Green’s Theorem 1159

with center the origin and radius a, where a is chosen to be small enough that C9 lies 
inside C. (See Figure 11.) Let D be the region bounded by C and C9. Then its positively 
oriented boundary is C ø s2C9d and so the general version of Green’s Theorem gives

 y
C
 P dx 1 Q dy 1 y

2C9
 P dx 1 Q dy − y

D

y S −Q
−x

2
−P
−y D dA

 − y
D

y F y 2 2 x 2

sx 2 1 y 2 d2 2
y 2 2 x 2

sx 2 1 y 2 d2G dA − 0

Therefore  y
C
 P dx 1 Q dy − y

C9
 P dx 1 Q dy

that is,  y
C
 F ! dr − y

C9
 F ! dr

We now easily compute this last integral using the parametrization given by 
rstd − a cos t i 1 a sin t j, 0 < t < 2!. Thus

 y
C
 F ! dr − y

C9
 F ! dr − y2!

0
 Fsrstdd ! r9std dt

  − y2!

0
 
s2a sin tds2a sin td 1 sa cos tdsa cos td

a 2 cos2t 1 a 2 sin2t
 dt − y2!

0
 dt − 2! n

We end this section by using Green’s Theorem to discuss a result that was stated in the 
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that F − P i 1 Q j is a 
vector field on an open simply-connected region D, that P and Q have continuous first-
order partial derivatives, and that

−P
−y

−
−Q
−x

     throughout D

If C is any simple closed path in D and R is the region that C encloses, then Green’s 
Theorem gives

!y
C
 F ! dr − !y

C
 P dx 1 Q dy − yy

R

S −Q
−x

2
−P
−y D dA − yy

R

0 dA − 0

A curve that is not simple crosses itself at one or more points and can be broken up  
into a number of simple curves. We have shown that the line integrals of F around these  
simple curves are all 0 and, adding these integrals, we see that yC F ! dr − 0 for any 
closed curve C. Therefore yC F ! dr is independent of path in D by Theo rem 16.3.3. It 
follows that F is a conservative vector field. n

y

x
D

C

Cª

FIGURE 11

16.4 Exercises
1–4 Evaluate the line integral by two methods: (a) directly and  
(b) using Green’s Theorem.

 1. !yC y 2 dx 1 x 2y dy, 
C is the rectangle with vertices s0, 0d, s5, 0d, s5, 4d, and s0, 4d

 2. !yC y dx 2 x dy, 
C is the circle with center the origin and radius 4

 3. !yC xy dx 1 x 2y 3 dy, 
C is the triangle with vertices s0, 0d, (1, 0), and (1, 2)
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1160 CHAPTER 16  Vector Calculus

 4.  !yC x 2y 2 dx 1 xy dy,  C consists of the arc of the parabola 
y − x 2 from s0, 0d to s1, 1d and the line segments from s1, 1d 
to s0, 1d and from s0, 1d to s0, 0d

5–12 Use Green’s Theorem to evaluate the line integral along  
the given positively oriented curve.

 5.  yC ye x dx 1 2e x dy, 
 C is the rectangle with vertices s0, 0d, s3, 0d, s3, 4d,  
and s0, 4d

 6. yC lnsxyd dx 1 syyxd dy, 
 C is the rectangle with vertices s1, 1d, s1, 4d, s2, 4d,  
and s2, 1d

 7. yC x 2y 2 dx 1 y tan21y dy, 
C is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d

 8.  yC sx 2 1 y 2d dx 1 sx 2 2 y 2d dy, 
C is the triangle with vertices s0, 0d, s2, 1d, and s0, 1d

 9.  yC (y 1 esx ) dx 1 s2x 1 cos y 2 d dy, 
C is the boundary of the region enclosed by the parabolas 
y − x 2 and x − y 2

 10.  yC y 4 dx 1 2xy 3 dy,  C is the ellipse x 2 1 2y 2 − 2

 11. yC y 3 dx 2 x 3 dy,  C is the circle x 2 1 y 2 − 4

 12.  yC s1 2 y 3d dx 1 sx 3 1 e y 2d dy,  C is the boundary of the 
region between the circles x 2 1 y 2 − 4 and x 2 1 y 2 − 9

13–18 Use Green’s Theorem to evaluate yC F ! dr. (Check the  
orientation of the curve before applying the theorem.)

 13.  yC s3 1 e x 2d dx 1 stan21y 1 3x 2d dy

y

x

C

20

2

≈+¥=1

≈+¥=4

1

1

 14. yC sx 2y3 1 y 2d dx 1 sy 4y3 2 x 2d dy

y

x

C

(4, 0)0

x=¥
(4, 2)

 15.   Fsx, yd − k  y cos x 2 xy sin x, xy 1 x cos x l,   
C is the triangle from s0, 0d to s0, 4d to s2, 0d to s0, 0d

 16.  Fsx, yd − ke2x 1 y 2, e2y 1 x 2 l,   
C consists of the arc of the curve y − cos x from s2!y2, 0d 
to s!y2, 0d and the line segment from s!y2, 0d to s2!y2, 0d

 17.  Fsx, yd − ky 2 cos y, x sin yl,   
C is the circle sx 2 3d2 1 sy 1 4d2 − 4 oriented clockwise

 18.  Fsx, yd − ksx 2 1 1, tan21 xl ,  C is the triangle from s0, 0d 
to s1, 1d to s0, 1d to s0, 0d

19–20 Verify Green’s Theorem by using a computer algebra 
system to evaluate both the line integral and the double integral.

 19.  Psx, yd − x 3y 4,  Qsx, yd − x 5y 4, 
C consists of the line segment from s2!y2, 0d to s!y2, 0d 
followed by the arc of the curve y − cos x from s!y2, 0d  
to s2!y2, 0d

 20.  Psx, yd − 2x 2 x 3y 5,  Qsx, yd − x 3y 8, 
C is the ellipse 4x 2 1 y 2 − 4

 21.  Use Green’s Theorem to find the work done by the force 
Fsx, yd − xsx 1 yd i 1 xy 2 j in moving a particle from the  
origin along the x-axis to s1, 0d, then along the line segment  
to s0, 1d, and then back to the origin along the y-axis.

 22.  A particle starts at the origin, moves along the x-axis to  
s5, 0d, then along the quarter-circle x 2 1 y 2 − 25, x > 0,  
y > 0 to the point s0, 5d, and then down the y-axis  
back to the origin. Use Green’s Theorem to find  
the work done on this particle by the force field 
Fsx, yd − ksin x, siny 1 xy 2 1 1

3x 3l .

 23.  Use one of the formulas in (5) to find the area under one arch 
of the cycloid x − t 2 sin t, y − 1 2 cos t.

 24.  If a circle C with radius 1 rolls along the outside of the  
circle x 2 1 y 2 − 16, a fixed point P on C traces out a  
curve called an epicycloid, with parametric equations 
x − 5 cos t 2 cos 5t, y − 5 sin t 2 sin 5t. Graph the epi-
cycloid and use (5) to find the area it encloses.

 25. (a)  If C is the line segment connecting the point sx1, y1d to 
the point sx2, y2d, show that 

y
C
 x dy 2 y dx − x1 y2 2 x2 y1

 (b)  If the vertices of a polygon, in counterclockwise order, 
are sx1, y1 d, sx2, y2 d, . . . , sxn , yn d, show that the area of 
the polygon is

 A − 1
2 fsx1 y2 2 x2 y1 d 1 sx2 y3 2 x3 y2 d 1 ∙ ∙ ∙

   1 sxn21 yn 2 xn yn21 d 1 sxn y1 2 x1 yn dg

 (c)  Find the area of the pentagon with vertices s0, 0d, s2, 1d, 
s1, 3d, s0, 2d, and s21, 1d.

;
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 SECTION 16.5  Curl and Divergence 1161

and C is any positively oriented simple closed curve that 
encloses the origin.

 32.  Calculate yC F ! dr, where Fsx, yd − kx 2 1 y, 3x 2 y 2 l and 
C is the positively oriented boundary curve of a region D that 
has area 6.

 33.  If F is the vector field of Example 5, show that yC F ! dr − 0 
for every simple closed path that does not pass through or 
enclose the origin.

 34.  Complete the proof of the special case of Green’s Theorem 
by proving Equation 3.

 35.  Use Green’s Theorem to prove the change of variables  
formula for a double integral (Formula 15.9.9) for the case 
where f sx, yd − 1:

y
R

y dx dy − y
S

y Z −sx, yd
−su, vd Z  du dv

 Here R is the region in the xy-plane that corresponds to the 
region S in the uv-plane under the transformation given by 
x − tsu, vd, y − hsu, vd.
   [Hint: Note that the left side is AsRd and apply the first  
part of Equation 5. Convert the line integral over −R to a  
line integral over −S and apply Green’s Theorem in the  
uv-plane.]

 26.  Let D be a region bounded by a simple closed path C in the  
xy-plane. Use Green’s Theorem to prove that the coordi nates 
of the centroid sx, y d of D are

x −
1

2A
 !yC

 x 2 dy      y − 2
1

2A  !yC y 2 dx

where A is the area of D.

 27.  Use Exercise 26 to find the centroid of a quarter-circular 
region of radius a.

 28.  Use Exercise 26 to find the centroid of the triangle with  
vertices s0, 0d, sa, 0d, and sa, bd, where a . 0 and b . 0.

 29.  A plane lamina with constant density "sx, yd − " occupies a 
region in the xy-plane bounded by a simple closed path C. 
Show that its moments of inertia about the axes are

Ix − 2
"

3
 !yC

 y 3 dx   Iy −
"

3
 !yC

 x 3 dy

(See Section 15.4.)

 30.  Use Exercise 29 to find the moment of inertia of a circular 
disk of radius a with constant density " about a diameter. 
(Compare with Example 15.4.4.)

 31.  Use the method of Example 5 to calculate yC F ! dr, where

Fsx, yd −
2xy i 1 sy 2 2 x 2d j

sx 2 1 y 2d2

Curl and Divergence

In this section we define two operations that can be performed on vector fields and that 
play a basic role in the applications of vector calculus to fluid flow and electricity and 
magnetism. Each operation resembles differentiation, but one produces a vector field 
whereas the other produces a scalar field.

■ Curl
If F − P i 1 Q j1 R k is a vector field on R 3 and the partial derivatives of P, Q, and R 
all exist, then the curl of F is the vector field on R 3 defined by

1  curl F − S −R
−y

2
−Q
−z D i 1 S −P

−z
2

−R
−x D j1 S −Q

−x
2

−P
−y D k

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator = (“del”) as

= − i 
−

−x
1 j 

−

−y
1 k 

−

−z
 

16.5
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1168 CHAPTER 16  Vector Calculus

If C is given by the vector equation

rstd − xstd i 1 ystd j    a < t < b

then the unit tangent vector (see Section 13.2) is

Tstd −
x9std

| r9std |  i 1
 y9std
| r9std |  j

You can verify that the outward unit normal vector to C is given by

nstd −
 y9std
| r9std |  i 2

x9std
| r9std |  j

(See Figure 4.) Then, from Equation 16.2.3, we have

  !  y
C
 F ! n ds − yb

a
 sF ! ndstd | r9std | dt

 − yb

a
 FPsxstd, ystdd y9std

| r9std | 2
Qsxstd, ystdd x9std

| r9std | G | r9std | dt

 − yb

a
 Psxstd, ystdd y9std dt 2 Qsxstd, ystdd x9std dt

 − y
C
 P dy 2 Q dx − y

D

y S −P
−x

1
−Q
−y D dA

by Green’s Theorem. But the integrand in this double integral is just the divergence  
of F. So we have a second vector form of Green’s Theorem.

13  ! y
C
 F ! n ds − y

D

y div Fsx, yd dA

This version says that the line integral of the normal component of F along C is equal to 
the double integral of the divergence of F over the region D enclosed by C.

0

y

x

D
C

r(t) n(t)

T(t)

FIGURE 4

16.5 Exercises
1–8 Find (a) the curl and (b) the divergence of the vector field.

 1. Fsx, y, zd − xy 2z 2 i 1 x 2yz 2 j1 x 2y 2z k

 2. Fsx, y, zd − x 3yz 2 j1 y 4z 3 k

 3. Fsx, y, zd − xye z i 1 yze x k

 4. Fsx, y, zd − sin yz i 1 sin zx j1 sin xy k

 5. Fsx, y, zd −
sx 

1 1 z
 i 1

sy 

1 1 x
 j1

sz 

1 1 y
 k

 6. Fsx, y, zd − lns2y 1 3zd i 1 lnsx 1 3zd j1 lnsx 1 2yd k

 7. Fsx, y, zd − ke x sin y, e y sin z , e z sin xl

 8. Fsx, y, zd − karctansxyd, arctansyzd, arctanszxdl

9–12 The vector field F is shown in the xy-plane and looks the 
same in all other horizontal planes. (In other words, F is inde pen - 
d ent of z and its z-component is 0.)
(a) Is div F positive, negative, or zero at P? Explain.
(b) Determine whether curl F − 0. If not, in which direction does 

curl F point at P?

 9. y

x0

P

 10. y

x0

P
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 SECTION 16.5  Curl and Divergence 1169

 25. divsF 1 Gd − div F 1 div G

 26. curlsF 1 Gd − curl F 1 curl G

 27. divs f Fd − f  div F 1 F ! = f

 28. curls f Fd − f  curl F 1 s= f d 3 F

 29. divsF 3 Gd − G ! curl F 2 F ! curl G

 30. divs= f 3 =td − 0

 31. curlscurl Fd − gradsdiv Fd 2 = 2 F

32–34 Let r − x i 1 y j1 z k and r − | r |.
 32. Verify each identity.
  (a) = ! r − 3 (b) = ! srrd − 4r
  (c) = 2r 3 − 12r

 33. Verify each identity.
  (a) =r − ryr (b) = 3 r − 0
  (c) =s1yrd − 2ryr 3 (d) = ln r − ryr 2

 34.  If F − ryr p, find div F. Is there a value of p for which  
div F − 0?

 35.  Use Green’s Theorem in the form of Equation 13 to prove 
Green’s first identity:

y
D

y f =2t dA − !y
C
 f s=td ! n ds 2 y

D

y = f ! =t dA

where D and C satisfy the hypotheses of Green’s Theorem  
and the appropriate partial derivatives of f  and t exist and are 
continuous. (The quantity =t ! n − Dn t occurs in the line 
integral; it is the directional derivative in the direction of the 
normal vector n and is called the normal derivative of t.)

 36.  Use Green’s first identity (Exercise 35) to prove Green’s  
second identity:

y
D

y s f =2t 2 t=2f d dA − !  y
C
 s f =t 2 t= f d ! n ds

   where D and C satisfy the hypotheses of Green’s Theorem  
and the appropriate partial derivatives of f  and t exist and are 
continuous.

 37.  Recall from Section 14.3 that a function t is called harmonic 
on D if it satisfies Laplace’s equation, that is, =2t − 0 on D. 
Use Green’s first identity (with the same hypotheses as in 
Exercise 35) to show that if t is harmonic on D, then 
!  yC Dn t ds − 0. Here Dn t is the normal derivative of t 
defined in Exercise 35.

 38.  Use Green’s first identity to show that if f  is harmonic  
on D, and if f sx, yd − 0 on the boundary curve C, then 
yyD | =f |2 dA − 0. (Assume the same hypotheses as in  
Exercise 35.)

 11. y

x0

P

 12. y

0

P

x

 13. (a) Verify Formula 3 for f sx, y, zd − sin xyz.
 (b) Verify Formula 11 for Fsx, y, zd − xyz 2 i 1 x 2yz 3 j1 y 2 k.

 14.  Let f  be a scalar field and F a vector field. State whether  
each expression is meaningful. If not, explain why. If so, 
state whether it is a scalar field or a vector field.

  (a)  curl f  (b) grad f
  (c)  div F (d) curlsgrad f d
  (e)  grad F (f) gradsdiv Fd
  (g)  divsgrad f d (h) gradsdiv f d
  (i)  curlscurl Fd (j) divsdiv Fd
  (k)  sgrad f d 3 sdiv Fd (l) divscurlsgrad f dd

15–20 Determine whether or not the vector field is conservative.  
If it is conservative, find a function f  such that F − = f .

 15. Fsx, y, zd − k2xy 3z 2, 3x 2y 2z 2, 2x 2y 3zl

 16. Fsx, y, zd − kyz, xz 1 y, xy 2 xl

 17. Fsx, y, zd − kln y, sxyyd 1 ln z, yyzl

 18.  Fsx, y, zd − yz sin xy i 1 xz sin xy j2 cos xy k

 19.  Fsx, y, zd − yz 2e xz i 1 ze xz j1 xyze xz k

 20.  Fsx, y, zd − e z cos x  i 1 e y cos z  j1 se z sin x 2 e y sin zd k

 21.  Is there a vector field G on R 3 such that 
curl G − kx sin y, cos y, z 2 xyl? Explain.

 22.  Is there a vector field G on R 3 such that curl G − kx, y, zl? 
Explain.

 23.  Show that any vector field of the form

Fsx, y, zd − f sxd i 1 tsyd j1 hszd k

where f , t, h are differentiable functions, is irrotational.

 24.  Show that any vector field of the form

Fsx, y, zd − f sy, zd i 1 tsx, zd j1 hsx, yd k

is incompressible.

25–31 Prove the identity, assuming that the appropriate partial 
derivatives exist and are continuous. If f  is a scalar field and F, 
G are vector fields, then f F, F ! G, and F 3 G are defined by

 s f Fdsx, y, zd − f sx, y, zd Fsx, y, zd
 sF ! Gdsx, y, zd − Fsx, y, zd ! Gsx, y, zd

 sF 3 Gdsx, y, zd − Fsx, y, zd 3 Gsx, y, zd
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1170 CHAPTER 16  Vector Calculus

 39.  This exercise demonstrates a connection between the curl  
vector and rotations. Let B be a rigid body rotating about the  
z-axis. The rotation can be described by the vector w − $k, 
where $ is the angular speed of B, that is, the tangential speed 
of any point P in B divided by the distance d from the axis of 
rotation. Let r − kx, y, zl be the position vector of P.

  (a)  By considering the angle % in the figure, show that the 
velocity field of B is given by v − w 3 r.

  (b) Show that v − 2$y i 1 $ x j.
  (c) Show that curl v − 2w.

0

¨

P

d

B

w

v

z

y

x

 40.  Maxwell’s equations relating the electric field E and magnetic 
field H as they vary with time in a region containing no 
charge and no current can be stated as follows:

 div E − 0        div H − 0

 curl E − 2
1
c

 
−H
−t

       curl H −
1
c

 
−E
−t

   where c is the speed of light. Use these equations to prove the 
following:

 (a) = 3 s= 3 Ed − 2
1
c 2  

−2 E
−t 2

 (b) = 3 s= 3 Hd − 2
1
c 2  

−2 H
−t 2

 (c) = 2E −
1
c 2  

−2 E
−t 2   [Hint: Use Exercise 31.]

 (d) = 2H −
1
c 2  

−2 H
−t 2

 41.  We have seen that all vector fields of the form F − =t  
satisfy the equation curl F − 0 and that all vector fields of the 
form F − curl G satisfy the equation div F − 0 (assuming  
continuity of the appropriate partial derivatives). This sug-
gests the question: are there any equations that all functions 
of the form f − div G must satisfy? Show that the answer to 
this question is “no” by proving that every continuous func- 
tion f  on R 3 is the divergence of some vector field. 
   [Hint: Let Gsx, y, zd − ktsx, y, zd, 0, 0l, where 
tsx, y, zd − yx

0 f st, y, zd dt.]

Parametric Surfaces and Their Areas

So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs 
of functions of two variables, and level surfaces of functions of three variables. Here we 
use vector functions to describe more general surfaces, called parametric surfaces, and 
compute their areas. Then we take the general surface area formula and see how it applies 
to special surfaces.

■ Parametric Surfaces
In much the same way that we describe a space curve by a vector function rstd of a single 
parameter t, we can describe a surface by a vector function rsu, vd of two param  eters u  
and v. We suppose that

1  rsu, vd − xsu, vd i 1 ysu, vd j1 zsu, vd k 

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the com-
ponent functions of r, are functions of the two variables u and v with domain D. The set 
of all points sx, y, zd in R 3 such that

2  x − xsu, vd    y − ysu, vd    z − zsu, vd 

and su, vd varies throughout D, is called a parametric surface S and Equations 2 are 
called parametric equations of S. Each choice of u and v gives a point on S; by making 

16.6
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1180 CHAPTER 16  Vector Calculus

because f sxd > 0. Therefore the area of S is

 A − y
D

y | rx 3 r% | dA

 − y2!

0
 yb

a
 f sxds1 1 f f 9sxdg2  dx d%

 − 2! yb

a
 f sxds1 1 f f 9sxdg2  dx

This is precisely the formula that was used to define the area of a surface of revolution in 
single-variable calculus (8.2.4).

16.6 Exercises
1–2 Determine whether the points P and Q lie on the given 
surface.

 1. rsu, vd − ku 1 v, u 2 2v, 3 1 u 2 v l 
Ps4, 25, 1d,  Qs0, 4, 6d

 2. rsu, vd − k1 1 u 2 v, u 1 v 2, u 2 2 v 2l 
Ps1, 2, 1d,  Qs2, 3, 3d

3–6 Identify the surface with the given vector equation.

 3. rsu, vd − su 1 vd i 1 s3 2 vd j1 s1 1 4u 1 5vd k

 4. rsu, vd − u 2 i 1 u cos v j1 u sin v k

 5. rss, td − ks cos t, s sin t, sl

 6. rss, td − k3 cos t, s, sin tl, 21 < s < 1

7–12 Use a computer to graph the parametric surface. Indicate 
on the graph which grid curves have u constant and which have v 
constant.

 7.  rsu, vd − ku 2, v 2, u 1 v l,   
21 < u < 1, 21 < v < 1

 8.  rsu, vd − ku, v 3, 2v l,   
22 < u < 2, 22 < v < 2

 9.  rsu, vd − ku 3, u sin v, u cos v l,   
21 < u < 1, 0 < v < 2!

 10.  rsu, vd − ku, sinsu 1 vd, sin v l, 
2! < u < !, 2! < v < !

 11.  x − sin v,  y − cos u sin 4v,  z − sin 2u sin 4v, 
0 < u < 2!, 2!y2 < v < !y2

 12. x −  cos u,  y − sin u sin v,  z − cos v, 
0 < u < 2!, 0 < v < 2!

13–18 Match the equations with the graphs labeled I–VI and  
give reasons for your answers. Determine which families of grid 
curves have u constant and which have v constant.

 13. rsu, vd − u cos v i 1 u sin v j1 v k

;

 14. rsu, vd − uv 2 i 1 u 2v j1 su 2 2 v 2d k

 15. rsu, vd − su 3 2 ud i 1 v 2 j1 u 2 k

 16.  x − s1 2 uds3 1 cos vd cos 4!u,

  y − s1 2 uds3 1 cos vd sin 4!u,

  z − 3u 1 s1 2 ud sin v

 17.  x − cos3u cos3v,  y − sin3u cos3v,  z − sin3v

 18.  x − sin u,  y − cos u sin v,  z − sin v

x

y

z z

x y

III

V

x y

z

IV

I II

VI

z

x y

z

x

y

z

x y
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 SECTION 16.6  Parametric Surfaces and Their Areas 1181

33–36 Find an equation of the tangent plane to the given 
parametric surface at the specified point.

 33. x − u 1 v,  y − 3u2,  z − u 2 v;  s2, 3, 0d

 34. x − u2 1 1,  y − v 3 1 1,  z − u 1 v;  s5, 2, 3d

 35. rsu, vd − u cos v i 1 u sin v j1 v k;  u − 1, v − !y3

 36.  rsu, vd − sin u i 1 cos u sin v j1 sin v k;   
u − !y6, v − !y6

37–38 Find an equation of the tangent plane to the given 
parametric surface at the specified point. Graph the surface and 
the tangent plane.

 37. rsu, vd − u2 i 1 2u sin v j1 u cos v k;  u − 1, v − 0

 38. rsu, vd − s1 2 u2 2 v2d i 2 v j2 u k;  s21, 21, 21d

39–50 Find the area of the surface.

 39.  The part of the plane 3x 1 2y 1 z − 6 that lies in the  
first octant

 40.  The part of the plane with vector equation 
rsu, vd − ku 1 v, 2 2 3u, 1 1 u 2 vl that is given by 
0 < u < 2, 21 < v < 1

 41.  The part of the plane x 1 2y 1 3z − 1 that lies inside the  
cylinder x 2 1 y2 − 3

 42.  The part of the cone z − sx 2 1 y2  that lies between the 
plane y − x and the cylinder y − x 2

 43. The surface z − 2
3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 44.  The part of the surface z − 4 2 2x 2 1 y that lies above the 
triangle with vertices s0, 0d, s1, 0d, and s1, 1d

 45.  The part of the surface z − xy that lies within the  
cylinder x 2 1 y 2 − 1

 46.  The part of the surface x − z 2 1 y that lies between the 
planes y − 0, y − 2, z − 0, and z − 2

 47.  The part of the paraboloid y − x 2 1 z 2 that lies within the 
cylinder x 2 1 z 2 − 16

 48.  The helicoid (or spiral ramp) with vector equation  
rsu, vd − u cos v i 1 u sin v j1 v k, 0 < u < 1, 
0 < v < !

 49.  The surface with parametric equations x − u2, y − uv, 
z − 1

2v 2, 0 < u < 1, 0 < v < 2

 50.  The part of the sphere x 2 1 y2 1 z 2 − b2 that lies inside the 
cylinder x 2 1 y 2 − a 2, where 0 , a , b

 51.  If the equation of a surface S is z − f sx, yd, where 
x 2 1 y 2 < R 2, and you know that | fx | < 1 and | fy | < 1, 
what can you say about AsSd?

;

19–26 Find a parametric representation for the surface.

 19.  The plane through the origin that contains the vectors i 2 j 
and j2 k

 20.  The plane that passes through the point s0, 21, 5d and  
contains the vectors k2, 1, 4 l and k23, 2, 5 l

 21.  The part of the hyperboloid 4x 2 2 4y2 2 z2 − 4 that lies in 
front of the yz-plane

 22.  The part of the ellipsoid x 2 1 2y 2 1 3z2 − 1 that lies to 
the left of the xz-plane

 23.  The part of the sphere x 2 1 y 2 1 z2 − 4 that lies above 
the cone z − sx 2 1 y 2 

 24.  The part of the cylinder x 2 1 z 2 − 9 that lies above the  
xy-plane and between the planes y − 24 and y − 4

 25.  The part of the sphere x 2 1 y 2 1 z 2 − 36 that lies between  
 the planes z − 0 and z − 3s3 

 26.  The part of the plane z − x 1 3 that lies inside the  
cylinder x 2 1 y 2 − 1

27–28 Use a computer to produce a graph that looks like the 
given one.

 27.  28. 
3

0

_3
_3

0
0 5

z

y
x

0

_1_1

1
0

1
0

_1

z

y x

 29.  Find parametric equations for the surface obtained by  
rotating the curve y − 1ys1 1 x 2d, 22 < x < 2, about  
the x-axis and use them to graph the surface.

 30.  Find parametric equations for the surface obtained by  
rotating the curve x − 1yy, y > 1, about the y-axis and  
use them to graph the surface.

 31. (a)  What happens to the spiral tube in Example 2 (see Fig-
ure 5) if we replace cos u by sin u and sin u by cos u ?

 (b)  What happens if we replace cos u by cos 2u and sin u  
by sin 2u ?

 32.  The surface with parametric equations

 x − 2 cos % 1 r coss%y2d

 y − 2 sin % 1 r coss%y2d

 z − r sins%y2d

   where 21
2 < r < 1

2 and 0 < % < 2!, is called a Möbius 
strip. Graph this surface with several viewpoints. What is 
unusual about it?

;

;

;

;

;
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1182 CHAPTER 16  Vector Calculus

52–53 Find the area of the surface correct to four decimal 
places by first simplifying an expression for area to one in terms 
of a single integral and then evaluating the integral numerically.

 52.  The part of the surface z − cossx 2 1 y 2d that lies inside the 
cylinder x 2 1 y 2 − 1

 53.  The part of the surface z − ln sx 2 1 y 2 1 2d that lies above 
the disk x 2 1 y 2 < 1

 54. Use a computer algebra system to find, to four  
decimal places, the area of the part of the surface 
z − s1 1 x 2 dys1 1 y 2 d that lies above the square 
| x | 1 | y | < 1. Illustrate by graphing this part of  
the surface.

 55. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with six squares to estimate the area of the  
surface z − 1ys1 1 x 2 1 y 2d, 0 < x < 6, 0 < y < 4.

 (b)  Use a computer algebra system to approximate the 
surface area in part (a) to four decimal places. Compare 
with the answer to part (a).

 56. Use a computer algebra system to find the area of the sur-
face with vector equation 

rsu, vd − kcos3u cos3v, sin3u cos3v, sin3v l
  0 < u < !, 0 < v < 2!. State your answer correct to four 

decimal places.

 57. Use a computer algebra system to find the exact area of the 
surface z − 1 1 2x 1 3y 1 4y 2, 1 < x < 4, 0 < y < 1.

 58. (a)  Set up, but do not evaluate, a double integral for  
the area of the surface with parametric equations 
x − au cos v, y − bu sin v, z − u 2, 0 < u < 2, 
0 < v < 2!.

 (b)  Eliminate the parameters to show that the surface is an 
elliptic paraboloid and set up another double integral 
for the surface area.

 (c)  Use the parametric equations in part (a) with a − 2 and 
b − 3 to graph the surface.

 (d)  For the case a − 2, b − 3, use a computer algebra 
system to find the surface area correct to four decimal 
places.

 59. (a)  Show that the parametric equations x − a sin u cos v, 
y − b sin u sin v, z − c cos u, 0 < u < !,  
0 < v < 2!, represent an ellipsoid.

 (b)  Use the parametric equations in part (a) to graph the 
ellipsoid for the case a − 1, b − 2, c − 3.

 (c)  Set up, but do not evaluate, a double integral for the 
sur face area of the ellipsoid in part (b).

;

;

 60. (a)  Show that the parametric equations x − a cosh u cos v, 
y − b cosh u sin v, z − c sinh u, represent a hyperbo-
loid of one sheet.

 (b)  Use the parametric equations in part (a) to graph the 
hyperboloid for the case a − 1, b − 2, c − 3.

 (c)  Set up, but do not evaluate, a double integral for the 
sur face area of the part of the hyperboloid in part (b) 
that lies between the planes z − 23 and z − 3.

 61.  Find the area of the part of the sphere x 2 1 y 2 1 z2 − 4z 
that lies inside the paraboloid z − x 2 1 y 2.

 62.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z

y
x

 63.  Find the area of the part of the sphere x 2 1 y 2 1 z2 − a 2 
that lies inside the cylinder x 2 1 y 2 − ax.

 64. (a)  Find a parametric representation for the torus obtained  
by rotating about the z-axis the circle in the xz-plane 
with center sb, 0, 0d and radius a , b. [Hint: Take as 
parameters the angles % and & shown in the figure.]

 (b)  Use the parametric equations found in part (a) to graph 
the torus for several values of a and b.

 (c)  Use the parametric representation from part (a) to find 
the surface area of the torus.

å
¨

0

(x, y, z)

(b, 0, 0)

z

x

y

;

;

Surface Integrals

The relationship between surface integrals and surface area is much the same as the rela-
tionship between line integrals and arc length. Suppose f  is a function of three variables 
whose domain includes a surface S. We will define the surface integral of f  over S in such 
a way that, in the case where f sx, y, zd − 1, the value of the surface integral is equal 

16.7
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1192 CHAPTER 16  Vector Calculus

where «0 is a constant (called the permittivity of free space) that depends on the units used. 
(In the SI system, «0 < 8.8542 3 10212 C2yN !m2.) Therefore, if the vector field F in 
Example 4 represents an electric field, we can conclude that the charge enclosed by S is 
Q − 4

3!«0.
Another application of surface integrals occurs in the study of heat flow. Suppose the 

temperature at a point sx, y, zd in a body is usx, y, zd. Then the heat flow is defined as the 
vector field

F − 2K =u

where K is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface S in the body is then given by the surface 
integral

y
S

y F ! dS − 2K y
S

y =u ! dS

EXAMPLE 6 The temperature u in a metal ball is proportional to the square of the 
distance from the center of the ball. Find the rate of heat flow across a sphere S of 
radius a with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

usx, y, zd − Csx 2 1 y 2 1 z2 d

where C is the proportionality constant. Then the heat flow is

Fsx, y, zd − 2K =u − 2KCs2x i 1 2y j1 2z kd

where K is the conductivity of the metal. Instead of using the usual parametrization of 
the sphere as in Example 4, we observe that the outward unit normal to the sphere 
x 2 1 y 2 1 z2 − a 2 at the point sx, y, zd is

 n −
1
a

 sx i 1 y j1 z kd

and so  F ! n − 2
2KC

a
 sx 2 1 y 2 1 z2 d

But on S we have x 2 1 y 2 1 z2 − a 2, so F ! n − 22aKC. Therefore the rate of heat 
flow across S is

 y
S

y F ! dS − y
S

y F ! n dS − 22aKC y
S

y dS

  − 22aKCAsSd − 22aKCs4!a 2 d − 28KC!a 3 n

16.7 Exercises
 1.  Let S be the surface of the box enclosed by the planes x − 61, 

y − 61, z − 61. Approximate yyS cossx 1 2y 1 3zd dS by 
using a Riemann sum as in Definition 1, taking the patches Sij 
to be the squares that are the faces of the box S and the points 
Pij* to be the centers of the squares.

 2.  A surface S consists of the cylinder x 2 1 y 2 − 1, 
21 < z < 1, together with its top and bottom disks. Suppose 
you know that f  is a continuous function with 

f s61, 0, 0d − 2     f s0, 61, 0d − 3     f s0, 0, 61d − 4
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 SECTION 16.7  Surface Integrals 1193

 15.  yyS  x dS, 
S is the surface y − x 2 1 4z, 0 < x < 1, 0 < z < 1

z 

x 

1 0 
y 

1 

y=≈+4z

 16.  yyS  y 2 dS, 
S is the part of the sphere x 2 1 y 2 1 z 2 − 1 that lies above 
the cone z − sx 2 1 y 2 

 17.  yyS sx 2z 1 y 2zd dS, 
S is the hemisphere x 2 1 y 2 1 z2 − 4, z > 0

 18.  yyS sx 1 y 1 zd dS, 
S is the part of the half-cylinder x 2 1 z 2 − 1, z > 0, that lies 
between the planes y − 0 and y − 2

 19.   yyS xz dS, 
S is the boundary of the region enclosed by the cylinder 
y2 1 z2 − 9 and the planes x − 0 and x 1 y − 5

z 

x 

y 5 

3 

3 ¥+z@=9 

x+y=5 

 20.  yyS sx 2 1 y 2 1 z2 d dS, 
S is the part of the cylinder x 2 1 y2 − 9 between the planes 
z − 0 and z − 2, together with its top and bottom disks

21–32 Evaluate the surface integral yyS F ! dS for the given vector 
field F and the oriented surface S. In other words, find the flux of F 
across S. For closed surfaces, use the positive (outward) orientation.

 21.  Fsx, y, zd − ze xy  i 2 3ze xy j1 xy k,   
S is the parallelogram of Exercise 5 with upward orientation

 22.  Fsx, y, zd − z i 1 y j1 x k, 
S is the helicoid of Exercise 7 with upward orientation

 23.  Fsx, y, zd − xy i 1 yz j1 zx k, S is the part of the  
para boloid z − 4 2 x 2 2 y 2 that lies above the square 
0 < x < 1, 0 < y < 1, and has upward orientation

   Estimate the value of yyS f sx, y, zd dS by using a Riemann 
sum, taking the patches Sij to be four quarter-cylinders and 
the top and bottom disks.

 3.  Let H be the hemisphere x 2 1 y 2 1 z2 − 50, z > 0, and  
suppose f  is a continuous function with f s3, 4, 5d − 7,
f s3, 24, 5d − 8, f s23, 4, 5d − 9, and f s23, 24, 5d − 12.  
By dividing H into four patches, estimate the value of 
yyH f sx, y, zd dS.

 4.  Suppose that f sx, y, zd − t(sx 2 1 y 2 1 z 2 ), where t is a  
function of one variable such that ts2d − 25. Evaluate 
yyS f sx, y, zd dS, where S is the sphere x 2 1 y 2 1 z2 − 4.

5–20 Evaluate the surface integral.

 5.  yyS sx 1 y 1 zd dS, 
S is the parallelogram with parametric equations x − u 1 v, 
y − u 2 v, z − 1 1 2u 1 v, 0 < u < 2, 0 < v < 1

y 

z 

x 
0 

1 

 6.  yyS xyz dS, 
S is the cone with parametric equations x − u cos v,  
y − u sin v, z − u, 0 < u < 1, 0 < v < !y2

 7.  yyS y dS, S is the helicoid with vector equation 
rsu, vd − ku cos v, u sin v, v l, 0 < u < 1, 0 < v < !

 8.  yyS sx 2 1 y 2d dS,  
S is the surface with vector equation 
rsu, vd − k2uv, u2 2 v2, u2 1 v2 l, u 2 1 v2 < 1

 9.  yyS x
2yz dS, S is the part of the plane z − 1 1 2x 1 3y that 

lies above the rectangle f0, 3g 3 f0, 2g

 10.  yyS xz dS, S is the part of the plane 2x 1 2y 1 z − 4 that 
lies in the first octant

 11.  yyS  x dS, 
S is the triangular region with vertices s1, 0, 0d, s0, 22, 0d,  
and s0, 0, 4d

 12.  yyS y dS, 
S is the surface z − 2

3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 13.  yyS  z 2 dS, 
S is the part of the paraboloid x − y 2 1 z 2 given  
by 0 < x < 1

 14.  yyS  y 2z 2 dS, 
S is the part of the cone y − sx 2 1 z 2  given by 0 < y < 5
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1194 CHAPTER 16  Vector Calculus

 24.  Fsx, y, zd − 2x i 2 y j1 z 3 k, S is the part of the cone 
z − sx 2 1 y 2  between the planes z − 1 and z − 3 with  
downward orientation

x 

z 

z=3

z=1

y 
0 

z=œ„„„„„„≈+¥ 

 25.  Fsx, y, zd − x i 1 y j1 z 2 k, S is the sphere with radius 1 
and center the origin

 26.  Fsx, y, zd − y i 2 x j1 2z k, S is the hemisphere 
x 2 1 y 2 1 z 2 − 4, z > 0, oriented downward

 27.  Fsx, y, zd − y j2 z k, 
S consists of the paraboloid y − x 2 1 z2, 0 < y < 1,  
and the disk x 2 1 z2 < 1, y − 1

 28.  Fsx, y, zd − yz i 1 zx j1 xy k, S is the surface 
z − x sin y, 0 < x < 2, 0 < y < !, with upward orientation

 29.  Fsx, y, zd − x i 1 2y j1 3z k, 
S is the cube with vertices s61, 61, 61d

 30.  Fsx, y, zd − x i 1 y j1 5 k, S is the boundary of the 
region enclosed by the cylinder x 2 1 z2 − 1 and the planes 
y − 0 and x 1 y − 2

 31.  Fsx, y, zd − x 2 i 1 y 2 j1 z2 k, S is the boundary of the 
solid half-cylinder 0 < z < s1 2 y 2  , 0 < x < 2

 32.  Fsx, y, zd − y i 1 sz 2 yd j1 x k, 
S is the surface of the tetrahedron with vertices s0, 0, 0d, 
s1, 0, 0d, s0, 1, 0d, and s0, 0, 1d

 33.  Use a computer algebra system to evaluate 
yyS sx 2 1 y 2 1 z2d dS correct to four decimal places, where 
S is the surface z − xe y, 0 < x < 1, 0 < y < 1.

 34.  Use a computer algebra system to find the exact value of 
yyS xyz dS, where S is the surface z − x 2y 2, 0 < x < 1, 
0 < y < 2.

 35.  Use a computer algebra system to find the value of 
yyS x

2 y 2z2 dS correct to four decimal places, where S is the 
part of the paraboloid z − 3 2 2x 2 2 y 2 that lies above the 
xy-plane.

 36.  Use a computer algebra system to find the flux of 

Fsx, y, zd − sinsxyzd i 1 x 2 y j1 z2e xy5 k

across the part of the cylinder 4y 2 1 z2 − 4 that lies above  
the xy-plane and between the planes x − 22 and x − 2 
with upward orientation. Illustrate by graphing the cylinder 
and the vector field on the same screen.

 37.  Find a formula for yyS F ! dS similar to Formula 10 for the 
case where S is given by y − hsx, zd and n is the unit nor-
mal that points toward the left (when the axes are drawn in 
the usual way).

 38.  Find a formula for yyS F ! dS similar to Formula 10 for the 
case where S is given by x − ksy, zd and n is the unit nor-
mal that points forward (that is, toward the viewer when the 
axes are drawn in the usual way).

 39.  Find the center of mass of the hemisphere 
x 2 1 y 2 1 z2 − a 2, z > 0, if it has constant density.

 40.  Find the mass of a thin funnel in the shape of a cone 
z − sx 2 1 y 2 , 1 < z < 4, if its density function  
is "sx, y, zd − 10 2 z.

 41. (a)  Give an integral expression for the moment of inertia Iz 
about the z-axis of a thin sheet in the shape of a surface 
S if the density function is ".

 (b)  Find the moment of inertia about the z-axis of the 
funnel in Exercise 40.

 42.  Let S be the part of the sphere x 2 1 y2 1 z2 − 25 that lies 
above the plane z − 4. If S has constant density k, find  
(a) the center of mass and (b) the moment of inertia about  
the z-axis.

 43.  A fluid has density 870 kgym3 and flows with velocity 
v − z i 1 y 2 j1 x 2 k, where x, y, and z are measured in 
meters and the components of v in meters per second. 
Find the rate of flow outward through the cylinder 
x 2 1 y 2 − 4, 0 < z < 1.

 44.  Seawater has density 1025 kgym3 and flows in a velocity field 
v − y i 1 x j, where x, y, and z are measured in meters and 
the components of v in meters per second. Find the rate of flow 
outward through the hemisphere x 2 1 y 2 1 z 2 − 9, z > 0.

 45.  Use Gauss’s Law to find the charge contained in the solid 
hemisphere x 2 1 y 2 1 z2 < a 2, z > 0, if the electric field is 

Esx, y, zd − x i 1 y j1 2z k

 46.  Use Gauss’s Law to find the charge enclosed by the cube  
with vertices s61, 61, 61d if the electric field is 

Esx, y, zd − x i 1 y j1 z k

 47.  The temperature at the point sx, y, zd in a substance with 
conductivity K − 6.5 is usx, y, zd − 2y 2 1 2z2. Find the 
rate of heat flow inward across the cylindrical surface 
y 2 1 z2 − 6, 0 < x < 4.

 48.  The temperature at a point in a ball with conductivity K is 
inversely proportional to the distance from the center of the 
ball. Find the rate of heat flow across a sphere S of radius a 
with center at the center of the ball.

 49.  Let F be an inverse square field, that is, Fsrd − cry| r |3 for 
some constant c, where r − x i 1 y j1 z k. Show that the 
flux of F across a sphere S with center the origin is indepen-
dent of the radius of S.
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 SECTION 16.8  Stokes’  Theorem 1199

Now let P0sx0, y0, z0 d be a point in the fluid and let Sa be a small disk with radius a and 
center P0. Then (curl FdsPd < scurl FdsP0d for all points P on Sa because curl F is contin-
uous. Thus, by Stokes’ Theorem, we get the following approximation to the circulation 
around the boundary circle Ca:

 y
Ca

 v ! dr − y
Sa

y curl v ! dS − y
Sa

y curl v ! n dS

 < y
Sa

y curl vsP0 d ! nsP0 d dS − curl vsP0 d ! nsP0 d!a 2

This approximation becomes better as a l 0 and we have

4  curl vsP0 d ! nsP0 d − lim 
a l 0

 
1

!a 2  y
Ca

 v ! dr 

Equation 4 gives the relationship between the curl and the circulation. It shows that 
curl v ! n is a measure of the rotating effect of the fluid about the axis n. The curling 
effect is greatest about the axis parallel to curl v.

Finally, we mention that Stokes’ Theorem can be used to prove Theorem 16.5.4 
(which states that if curl F − 0 on all of R 3, then F is conservative). From our pre vious 
work (Theorems 16.3.3 and 16.3.4), we know that F is conservative if yC F ! dr − 0 for 
every closed path C. Given C, suppose we can find an orientable surface S whose bound-
ary is C. (This can be done, but the proof requires advanced techniques.) Then Stokes’ 
Theorem gives

y
C
 F ! dr − y

S

y curl F ! dS − y
S

y 0 ! dS − 0

A curve that is not simple can be broken into a number of simple curves, and the integrals 
around these simple curves are all 0. Adding these integrals, we obtain yC F ! dr − 0 for 
any closed curve C.

curl v

FIGURE 7

Imagine a tiny paddle wheel placed in 
the fluid at a point P, as in Figure 7; 
the paddle wheel rotates fastest when 
its axis is parallel to curl v.

16.8 Exercises
 1.  A disk D, a hemisphere H, and a portion P of a paraboloid 

are shown. Suppose F is a vector field on R3 whose compo-
nents have continuous partial derivatives. Explain why this 
statement is true:

y
D

y curl F ! dS − y
H

y curl F ! dS − y
P

y curl F ! dS

z

D

yx 2

4

2

z

H

yx 2

4

2

z

P

yx 2

4

2

2–6 Use Stokes’ Theorem to evaluate yyS curl F ! dS.

 2.  Fsx, y, zd − x 2 sin z i 1 y 2 j1 xy k, 
S is the part of the paraboloid z − 1 2 x 2 2 y 2 that lies 
above the xy-plane, oriented upward

 3.  Fsx, y, zd − ze y i 1 x cos y j1 xz sin y k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 16, y > 0, oriented in 
the direction of the positive y-axis

 4.  Fsx, y, zd − tan21sx 2 yz2d i 1 x 2y j1 x 2z2 k,
   S is the cone x − sy 2 1 z2 , 0 < x < 2, oriented in the 

direction of the positive x-axis

 5.  Fsx, y, zd − xyz i 1 xy j1 x 2 yz k, 
S consists of the top and the four sides (but not the bottom)  
of the cube with vertices s61, 61, 61d, oriented outward
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1200 CHAPTER 16  Vector Calculus

 6.  Fsx, y, zd − e xy i 1 e xz j1 x 2z k, 
S is the half of the ellipsoid 4x 2 1 y 2 1 4z 2 − 4 that lies 
to the right of the xz-plane, oriented in the direction of the 
positive y-axis

z

y

x

0

S

4≈+¥+4z@=4

7–14 Use Stokes’ Theorem to evaluate yC F ! dr. In each case C 
is oriented counterclockwise as viewed from above, unless 
otherwise stated.

 7.  Fsx, y, zd − sx 1 y 2 d i 1 sy 1 z2 d j1 sz 1 x 2 d k,   
C is the triangle with vertices (1, 0, 0), (0, 1, 0), and  
(0, 0, 1)

 8.  Fsx, y, zd − i 1 sx 1 yzd j1 (xy 2 sz ) k,   
C is the boundary of the part of the plane 3x 1 2y 1 z − 1  
in the first octant

 9.  Fsx, y, zd − xy i 1 yz j1 zx k,  
C is the boundary of the part of the paraboloid 
z − 1 2 x 2 2 y 2 in the first octant

z=1-≈-¥C

z

y

x

 10.  Fsx, y, zd − 2y i 1 xz j1 sx 1 yd k,  
C is the curve of intersection of the plane z − y 1 2 and the 
cylinder x 2 1 y 2 − 1

 11. Fsx, y, zd − k2yx 2, xy 2, e xyl, C is the circle in the xy-plane 
of radius 2 centered at the origin

 12. Fsx, y, zd − ze x i 1 sz 2 y 3d j1 sx 2 z 3d k,  
C is the circle y 2 1 z 2 − 4, x − 3, oriented clockwise as 
viewed from the origin

 13. Fsx, y, zd − x 2y i 1 x 3 j1 e z tan21z k,  
C is the curve with parametric equations x − cos t, y − sin t, 
z − sin t, 0 < t < 2!

z

x

y
(_1, 0, 0)

(1, 0, 0)

C

 14. Fsx, y, zd − kx 3 2 z, xy, y 1 z 2l, C is the curve of intersec-
tion of the paraboloid z − x 2 1 y 2 and the plane z − x

z

x y

z=≈+¥

z=x

 15. (a)  Use Stokes’ Theorem to evaluate yC F ! dr, where

Fsx, y, zd − x 2z i 1 xy 2 j1 z2 k

   and C is the curve of intersection of the plane 
x 1 y 1 z − 1 and the cylinder x 2 1 y 2 − 9, oriented 
counterclockwise as viewed from above.

 (b)  Graph both the plane and the cylinder with domains  
chosen so that you can see the curve C and the surface  
that you used in part (a).

 (c)  Find parametric equations for C and use them to  
graph C.

 16. (a)  Use Stokes’ Theorem to evaluate yC F ! dr, where 
Fsx, y, zd − x 2 y i 1 1

3 x 3 j1 xy k and C is the curve of 
intersection of the hyperbolic paraboloid z − y 2 2 x 2 and 
the cylinder x 2 1 y 2 − 1, oriented counterclockwise as 
viewed from above.

 (b)  Graph both the hyperbolic paraboloid and the cylinder 
with domains chosen so that you can see the curve C and 
the surface that you used in part (a).

 (c)  Find parametric equations for C and use them to graph C.

17–19 Verify that Stokes’ Theorem is true for the given vector  
field F and surface S.

 17.  Fsx, y, zd − 2y i 1 x j2 2 k, 
S is the cone z 2 − x 2 1 y2, 0 < z < 4, oriented downward

;

;

;

;
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 SECTION 16.9  The Divergence Theorem 1201

under the influence of the force field 

Fsx, y, zd − z 2 i 1 2xy j1 4y 2 k

  Find the work done.

 22.  Evaluate 

y
C
 sy 1 sin xd dx 1 sz2 1 cos yd dy 1 x 3 dz

   where C is the curve rstd − ksin t, cos t, sin 2tl, 0 < t < 2!. 
[Hint: Observe that C lies on the surface z − 2xy.]

 23.  If S is a sphere and F satisfies the hypotheses of Stokes’  
Theorem, show that yyS curl F ! dS − 0.

 24.  Suppose S and C satisfy the hypotheses of Stokes’ Theorem 
and f , t have continuous second-order partial derivatives. Use 
Exercises 26 and 28 in Section 16.5 to show the following.

 (a) yC s f =td ! dr − yyS s= f 3 =td ! dS
 (b) yC s f = f d ! dr − 0
 (c) yC s f =t 1 t= f d ! dr − 0

 18.  Fsx, y, zd − 22yz i 1 y j1 3x k, 
S is the part of the paraboloid z − 5 2 x 2 2 y 2 that lies 
above the plane z − 1, oriented upward

 19.  Fsx, y, zd − y i 1 z j1 x k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 1, y > 0, oriented in the 
direction of the positive y-axis

 20.  Let C be a simple closed smooth curve that lies in the plane 
x 1 y 1 z − 1. Show that the line integral

y
C
 z dx 2 2x dy 1 3y dz

   depends only on the area of the region enclosed by C and not 
on the shape of C or its location in the plane.

 21.  A particle moves along line segments from the origin to the 
points s1, 0, 0d, s1, 2, 1d, s0, 2, 1d, and back to the origin 

The Divergence Theorem

In Section 16.5 we rewrote Green’s Theorem in a vector version as

y
C
 F ! n ds − y

D

y div Fsx, yd dA

where C is the positively oriented boundary curve of the plane region D. If we were seek-
ing to extend this theorem to vector fields on R 3, we might make the guess that

1  y
S

y F ! n dS − y y
E

y div Fsx, y, zd dV  

where S is the boundary surface of the solid region E. It turns out that Equation 1 is true, 
under appropriate hypotheses, and is called the Divergence Theorem. Notice its similar-
ity to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a derivative 
of a function (div F in this case) over a region to the integral of the original function F 
over the boundary of the region.

At this stage you may wish to review the various types of regions over which we were 
able to evaluate triple integrals in Section 15.6. We state and prove the Diver gence Theo-
rem for regions E that are simultaneously of types 1, 2, and 3 and we call such regions  
simple solid regions. (For instance, regions bounded by ellipsoids or rectangular boxes 
are simple solid regions.) The boundary of E is a closed surface, and we use the conven-
tion, introduced in Section 16.7, that the positive orientation is outward; that is, the unit 
normal vector n is directed outward from E.

The Divergence Theorem Let E be a simple solid region and let S be the bound-
ary surface of E, given with positive (outward) orientation. Let F be a vector field 
whose component functions have continuous partial derivatives on an open region 
that contains E. Then

y
S

y F ! dS − y y
E

y div F dV

The Divergence Theorem is some-
times called Gauss’s Theorem after 
the great German mathe matician 
Karl Friedrich Gauss (1777– 1855), who 
discovered this theorem during his 
investigation of electrostatics. In 
Eastern Europe the Divergence Theo-
rem is known as Ostrogradsky’s 
Theorem after the Russian mathe -
matician Mikhail Ostrogradsky  
(1801– 1862), who published this 
result in 1826.

16.9
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16.9 Exercises
1–4 Verify that the Divergence Theorem is true for the vector 
field F on the region E.

 1.  Fsx, y, zd − 3x i 1 xy j1 2xz k, 
E is the cube bounded by the planes x − 0, x − 1, y − 0, 
y − 1, z − 0, and z − 1

 2.   Fsx, y, zd − y 2z 3 i 1 2yz j1 4z 2 k, 
E is the solid enclosed by the paraboloid z − x 2 1 y 2 and the 
plane z − 9

 3.  Fsx, y, zd − kz, y, x l, 
E is the solid ball x 2 1 y 2 1 z 2 < 16

 4.  Fsx, y, zd − kx 2, 2y, zl, 
E is the solid cylinder y 2 1 z2 < 9, 0 < x < 2

5–17 Use the Divergence Theorem to calculate the surface 
integral yyS F ! dS; that is, calculate the flux of F across S.

 5.  Fsx, y, zd − xyez i 1 xy 2z3 j2 yez k, 
S is the surface of the box bounded by the coordinate planes 
and the planes x − 3, y − 2, and z − 1

 6.  Fsx, y, zd − x 2yz i 1 xy 2z j1 xyz2 k, 
S is the surface of the box enclosed by the planes x − 0,  
x − a, y − 0, y − b, z − 0, and z − c, where a, b, and c are 
positive numbers

 7.  Fsx, y, zd − 3xy 2 i 1 xe z j1 z3 k, 
S is the surface of the solid bounded by the cylinder 
y 2 1 z2 − 1 and the planes x − 21 and x − 2

 8.  Fsx, y, zd − sx 3 1 y 3d i 1 sy 3 1 z3d j1 sz3 1 x 3d k, 
S is the sphere with center the origin and radius 2

 9.  Fsx, y, zd − xe y i 1 sz 2 e yd j2 xy k, 
S is the ellipsoid x 2 1 2y 2 1 3z 2 − 4

 10. Fsx, y, zd − e y tan z i 1 x 2y j1 e x cos y k,  
S is the surface of the solid that lies above the xy-plane and 
below the surface z − 2 2 x 2 y 3, 21 < x < 1, 
21 < y < 1

 11.  Fsx, y, zd − s2x 3 1 y 3d i 1 sy 3 1 z 3d  j1 3y 2z k, 
S is the surface of the solid bounded by the paraboloid 
z − 1 2 x 2 2 y 2 and the xy-plane

 12.  Fsx, y, zd − sxy 1 2xzd i 1 sx 2 1 y 2d  j1 sxy 2 z 2d k, 
S is the surface of the solid bounded by the cylinder 
x 2 1 y 2 − 4 and the planes z − y 2 2 and z − 0

 13. Fsx, y, zd − x 2z i 1 xz 3 j1 y lnsx 1 1d k,  
S is the surface of the solid bounded by the planes 
x 1 2z − 4, y − 3, x − 0, y − 0, and z − 0

x

y

z

x+2z=4

y=3

 14. Fsx, y, zd − sxy 2 z 2 d i 1 x 3 sz  

 j1 sxy 1 z 2d k, 
S is the surface of the solid bounded by the cylinder x − y 2 
and the planes x 1 z − 1 and z − 0

z

x
y

x=¥

x+z=1

 15.  Fsx, y, zd − z i 1 y  j1 zx k, 
S is the surface of the tetrahedron enclosed by the coordinate 
planes and the plane

x
a

1
y
b

1
z
c

− 1

where a, b, and c are positive numbers

z

(0, 0, c)

(0, b, 0)

(a, 0, 0)

x

0

y

+ + =1
x
a

y
b

z
c

 16.  F − | r |2 r, where r − x i 1 y j1 z k,  
S is the sphere with radius R and center the origin
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 25. Verify that div E − 0 for the electric field Esxd −
«Q

| x |3  x.

 26.   Use the Divergence Theorem to evaluate

y
S

y s2x 1 2y 1 z 2d dS

where S is the sphere x 2 1 y 2 1 z2 − 1.

27–32 Prove each identity, assuming that S and E satisfy the 
conditions of the Divergence Theorem and the scalar functions 
and components of the vector fields have continuous second-
order partial derivatives.

 27. y
S

y a ! n dS − 0, where a is a constant vector

 28. VsE d − 1
3 y

S

y F ! dS, where Fsx, y, zd − x i 1 y j1 z k

 29. y
S

y curl F ! dS − 0 30. y
S

y Dn f dS − y y
E

y = 2f dV

 31. y
S

y s f =td ! n dS − y y
E

y s f = 2t 1 = f ! =td dV

 32. y
S

y s f =t 2 t= f d ! n dS − y y
E

y s f = 2t 2 t= 2f d dV

 33.  Suppose S and E satisfy the conditions of the Divergence 
Theorem and f  is a scalar function with continuous partial 
derivatives. Prove that

y
S

y f n dS − y y
E

y = f dV

   These surface and triple integrals of vector functions are  
vectors defined by integrating each component function. 
[Hint: Start by applying the Divergence Theorem to F − f c, 
where c is an arbitrary constant vector.]

 34.  A solid occupies a region E with surface S and is immersed 
in a liquid with constant density ". We set up a coordinate 
system so that the xy-plane coincides with the surface of the 
liquid, and positive values of z are measured downward into 
the liquid. Then the pressure at depth z is p − "tz, where t 
is the acceleration due to gravity (see Section 8.3). The total 
buoyant force on the solid due to the pressure distribution is 
given by the surface integral

F − 2y
S

y pn dS

where n is the outer unit normal. Use the result of Exer-
cise 33 to show that F − 2Wk, where W is the weight of 
the liquid displaced by the solid. (Note that F is directed 
upward because z is directed downward.) The result is 
Archimedes’ Principle: the buoyant force on an object 
equals the weight of the dis placed liquid.

 17.  F − | r | r, where r − x i 1 y j1 z k, 
S consists of the hemisphere z − s1 2 x 2 2 y 2  and the 
disk x 2 1 y 2 < 1 in the xy-plane

 18.  Plot the vector field

Fsx, y, zd − sin x cos2 y i 1 sin3y cos4z j1 sin5z cos6x k

in the cube cut from the first octant by the planes x − !y2, 
y − !y2, and z − !y2. Then use a computer algebra sys-
tem to compute the flux across the surface of the cube.

 19.  Use the Divergence Theorem to evaluate yyS F ! dS, where 

Fsx, y, zd − z2x i 1 (1
3 y 3 1 tan21z) j1 sx 2z 1 y 2 d k 

and S is the top half of the sphere x 2 1 y 2 1 z2 − 1.  
[Hint: Note that S is not a closed surface. First compute  
integrals over S1 and S2, where S1 is the disk x 2 1 y 2 < 1, 
oriented downward, and S2 − S ø S1.]

 20.  Let Fsx, y, zd − z tan21sy 2 d i 1 z3 lnsx 2 1 1d j1 z k.  
Find the flux of F across the part of the paraboloid 
x 2 1 y 2 1 z − 2 that lies above the plane z − 1 and is  
oriented upward.

 21.  A vector field F is shown. Use the interpretation of diver-
gence derived in this section to determine whether the 
points P1 and P2 are sources or sinks.

2

_2

_2 2

P¡

P™

 22. (a)  Are the points P1 and P2 sources or sinks for the vector 
field F shown in the figure? Give an explanation based 
solely on the picture.

 (b)  Given that Fsx, yd − kx, y 2 l, use the definition of 
divergence to verify your answer to part (a).

2

_2

_2 2

P¡

P™

23–24 Plot the vector field and guess where div F . 0 and 
where div F , 0. Then calculate div F to check your guess.

 23. Fsx, yd − kxy, x 1 y 2 l 24. Fsx, yd − kx 2, y 2 l

;
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1208 CHAPTER 16  Vector Calculus

Summary

The main results of this chapter are all higher-dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.

16.10

r(a)

r(b)

C

a bFundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem

Solids and their boundaries

Surfaces and their boundaries

Curves and their boundaries (endpoints)

C

D

E

S

n

n

C

S

n

yb

a
 F9sxd dx − Fsbd 2 Fsad

y
C
 = f ! dr − f srsbdd 2 f srsadd

y
D

y S −Q
−x

2
−P
−y D dA − y

C
 P dx 1 Q dy

y
S

y curl F ! dS − y
C
 F ! dr

y y
E

y div F dV − y
S

y F ! dS
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 16 REVIEW

 1.  What is a vector field? Give three examples that have physical 
meaning.

 2. (a) What is a conservative vector field?
 (b) What is a potential function?

 3. (a)  Write the definition of the line integral of a scalar func-
tion f  along a smooth curve C with respect to arc length.

 (b) How do you evaluate such a line integral?
 (c)  Write expressions for the mass and center of mass of a 

thin wire shaped like a curve C if the wire has linear 
density function "sx, yd.

 (d)  Write the definitions of the line integrals along C of a 
scalar function f  with respect to x, y, and z.

 (e) How do you evaluate these line integrals?

 4. (a)  Define the line integral of a vector field F along a smooth 
curve C given by a vector function rstd.

 (b)  If F is a force field, what does this line integral represent?
 (c)  If F − kP, Q, R l, what is the connection between the line 

integral of F and the line integrals of the component 
functions P, Q, and R?

 5. State the Fundamental Theorem for Line Integrals.

 6. (a)  What does it mean to say that yC F ! dr is independent  
of path?

 (b)  If you know that yC F ! dr is independent of path, what 
can you say about F?

 7. State Green’s Theorem.

 8.  Write expressions for the area enclosed by a curve C in terms  
of line integrals around C.

 9. Suppose F is a vector field on R3.
  (a) Define curl F. (b) Define div F.

 (c)  If F is a velocity field in fluid flow, what are the physical 
interpretations of curl F and div F?

 10.  If F − P i 1 Q j, how do you determine whether F is conser-
vative? What if F is a vector field on R3?

 11. (a) What is a parametric surface? What are its grid curves?
 (b) Write an expression for the area of a parametric surface.
 (c)  What is the area of a surface given by an equation 

z − tsx, yd?

 12. (a)  Write the definition of the surface integral of a scalar 
function f  over a surface S.

 (b)  How do you evaluate such an integral if S is a para metric 
surface given by a vector function rsu, vd?

 (c) What if S is given by an equation z − tsx, yd?
 (d)  If a thin sheet has the shape of a surface S, and the 

density at sx, y, zd is "sx, y, zd, write expressions for the 
mass and center of mass of the sheet.

 13. (a)  What is an oriented surface? Give an example of a non- 
orientable surface.

 (b)  Define the surface integral (or flux) of a vector field F 
over an oriented surface S with unit normal vector n.

 (c)  How do you evaluate such an integral if S is a parametric 
surface given by a vector function rsu, vd?

 (d) What if S is given by an equation z − tsx, yd?

 14. State Stokes’ Theorem.

 15. State the Divergence Theorem.

 16.  In what ways are the Fundamental Theorem for Line Inte-
grals, Green’s Theorem, Stokes’ Theorem, and the Diver-
gence Theorem similar?

Answers to the Concept Check are available at StewartCalculus.com.CONCEPT CHECK

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that dis-
proves the statement.

 1. If F is a vector field, then div F is a vector field.

 2. If F is a vector field, then curl F is a vector field.

 3.  If f  has continuous partial derivatives of all orders on R 3, 
then divscurl = f d − 0.

 4.  If f  has continuous partial derivatives on R 3 and C is any  
circle, then yC = f ! dr − 0.

 5.  If F − P i 1 Q j and Py − Qx in an open region D, then F is 
conservative.

 6. y2C f sx, yd ds − 2yC f sx, yd ds

 7.  If F and G are vector fields and divF − divG, then F − G.

 8.   The work done by a conservative force field in moving a  
particle around a closed path is zero.

 9.  If F and G are vector fields, then

curlsF 1 Gd − curl F 1 curl G

TRUE-FALSE QUIZ
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1210 CHAPTER 16  Vector Calculus

 1. A vector field F, a curve C, and a point P are shown.
 (a) Is yC F ! dr positive, negative, or zero? Explain.
 (b) Is div FsPd positive, negative, or zero? Explain.

y

x

P

C

2–9 Evaluate the line integral.

 2.  yC x ds, 
C is the arc of the parabola y − x 2 from (0, 0) to (1, 1)

 3.  yC yz cos x ds, 
C: x − t, y − 3 cos t, z − 3 sin t, 0 < t < !

 4.  yC y dx 1 sx 1 y 2d dy,  C is the ellipse 4x 2 1 9y 2 − 36  
with counterclockwise orientation

 5.  yC y 3 dx 1 x 2 dy,  C is the arc of the parabola x − 1 2 y 2  
from s0, 21d to s0, 1d

 6.  yC sxy  dx 1 e y dy 1 xz dz, 
C is given by rstd − t 4 i 1 t 2 j1 t 3 k, 0 < t < 1

 7.  yC xy dx 1 y 2 dy 1 yz dz, 
C is the line segment from s1, 0, 21d, to s3, 4, 2d

 8.  yC F ! dr, where Fsx, yd − xy i 1 x 2 j and C is given by 
rstd − sin t i 1 s1 1 td j, 0 < t < !

 9.  yC F ! dr, where Fsx, y, zd − e z i 1 xz j1 sx 1 yd k and  
C is given by rstd − t 2 i 1 t 3 j2 t k, 0 < t < 1

 10.   Find the work done by the force field

Fsx, y, zd − z i 1 x j1 y k

   in moving a particle from the point s3, 0, 0d to the point 
s0, !y2, 3d along each path.

 (a) A straight line
 (b) The helix x − 3 cos t, y − t, z − 3 sin t

11–12 Show that F is a conservative vector field. Then find a 
function f  such that F − = f .

 11. Fsx, yd − s1 1 xyde xy i 1 se y 1 x 2e xy d j

 12. Fsx, y, zd − sin y i 1 x cos y j2 sin z k

13–14 Show that F is conservative and use this fact to evaluate 
yC F ! dr along the given curve.

 13.  Fsx, yd − s4x 3y 2 2 2xy 3d i 1 s2x 4 y 2 3x 2y 2 1 4y 3d j, 
C: rstd − st 1 sin ! td i 1 s2t 1 cos ! td j, 0 < t < 1

 14.  Fsx, y, zd − e y i 1 sxe y 1 e zd j1 ye z k, 
C is the line segment from s0, 2, 0d to s4, 0, 3d

 15.  Verify that Green’s Theorem is true for the line integral 
yC xy 2 dx 2 x 2 y dy, where C consists of the parabola y − x 2 
from s21, 1d to s1, 1d and the line segment from s1, 1d  
to s21, 1d.

 16. Use Green’s Theorem to evaluate

y
C
 s1 1 x 3  dx 1 2xy dy

where C is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d.

 17.  Use Green’s Theorem to evaluate yC x 2 y dx 2 xy 2 dy,  
where C is the circle x 2 1 y 2 − 4 with counterclockwise  
orientation.

 18. Find curl F and div F if

Fsx, y, zd − e2x sin y i 1 e2y sin z j1 e2z sin x k

 19.  Show that there is no vector field G such that

curl G − 2x i 1 3yz j2 xz2 k

 20.  If F and G are vector fields whose component functions have 
continuous first partial derivatives, show that

curlsF 3 Gd − F div G 2 G div F 1 sG ! = dF 2 sF ! = dG

 21.  If C is any piecewise-smooth simple closed plane curve  
and f  and t are differentiable functions, show that 
yC f sxd dx 1 tsyd dy − 0.

EXERCISES

 10.  If F and G are vector fields, then

curlsF ! Gd − curl F ! curl G

 11.  If S is a sphere and F is a constant vector field, then 
yyS F ! dS − 0.

 12. There is a vector field F such that

curl F − x i 1 y j1 z k

 13.  The area of the region bounded by the positively oriented, 
piecewise smooth, simple closed curve C is A − !yC

 y dx.
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 CHAPTER 16  Review 1211

 33.  Use Stokes’ Theorem to evaluate yC F ! dr, where 
Fsx, y, zd − xy i 1 yz j1 zx k and C is the triangle with 
vertices s1, 0, 0d, s0, 1, 0d, and s0, 0, 1d, oriented counter-
clockwise as viewed from above.

 34.  Use the Divergence Theorem to calculate the surface inte-
gral yyS F ! dS, where Fsx, y, zd − x 3 i 1 y 3 j1 z3 k and S 
is the surface of the solid bounded by the cylinder 
x 2 1 y 2 − 1 and the planes z − 0 and z − 2.

 35.  Verify that the Divergence Theorem is true for the vector  
field Fsx, y, zd − x i 1 y j1 z k, where E is the unit ball 
x 2 1 y 2 1 z2 < 1.

 36. Compute the outward flux of

Fsx, y, zd −
x i 1 y j1 z k

sx 2 1 y 2 1 z2 d3y2

through the ellipsoid 4x 2 1 9y 2 1 6z2 − 36.

 37. Let

Fsx, y, zd − s3x 2 yz 2 3yd i 1 sx 3z 2 3xd j1 sx 3 y 1 2zd k

Evaluate yC F ! dr, where C is the curve with initial point 
s0, 0, 2d and terminal point s0, 3, 0d shown in the figure.

0

(0, 0, 2)

(0, 3, 0)
(1, 1, 0)

(3, 0, 0)

z

x

y

 38. Let

Fsx, yd −
s2x 3 1 2xy 2 2 2yd i 1 s2y 3 1 2x 2 y 1 2xd j

x 2 1 y 2

Evaluate   ! yC F ! dr, where C is shown in the figure.

0 x

y
C

 22. If f  and t are twice differentiable functions, show that

= 2s ftd − f = 2t 1 t= 2f 1 2= f ! =t

 23.  If f  is a harmonic function, that is, = 2 f − 0, show that the 
line integral y fy dx 2 fx dy is independent of path in any sim-
ple region D.

 24. (a)  Sketch the curve C with parametric equations

x − cos t    y − sin t    z − sin t    0 < t < 2!

 (b) Find yC 2xe 2y dx 1 s2x 2e 2y 1 2y cot zd dy 2 y 2 csc2z dz.

 25.  Find the area of the part of the surface z − x 2 1 2y that lies 
above the triangle with vertices s0, 0d, s1, 0d, and s1, 2d.

 26. (a)  Find an equation of the tangent plane at the point 
s4, 22, 1d to the parametric surface S given by

rsu, vd − v2 i 2 uv j1 u 2 k
0 < u < 3, 23 < v < 3

 (b)  Graph the surface S and the tangent plane found in  
part (a).

 (c)  Set up, but do not evaluate, an integral for the surface 
area of S.

 (d) If

Fsx, y, zd −
z2

1 1 x 2  i 1
x 2

1 1 y 2  j1
 y 2

1 1 z2  k

  use a computer algebra system to find yyS F ! dS correct 
to four decimal places.

27–30 Evaluate the surface integral.

 27.  yyS z dS, where S is the part of the paraboloid z − x 2 1 y 2 
that lies under the plane z − 4

 28.  yyS sx 2z 1 y 2zd dS, where S is the part of the plane 
z − 4 1 x 1 y that lies inside the cylinder x 2 1 y 2 − 4

 29.  yyS F ! dS, where Fsx, y, zd − xz i 2 2y j1 3x k and S is 
the sphere x 2 1 y 2 1 z2 − 4 with outward orientation

 30.  yyS F ! dS, where Fsx, y, zd − x 2 i 1 xy j1 z k and S is the 
part of the paraboloid z − x 2 1 y 2 below the plane z − 1 
with upward orientation

 31.  Verify that Stokes’ Theorem is true for the vector field 
Fsx, y, zd − x 2 i 1 y 2 j1 z2 k, where S is the part of the 
paraboloid z − 1 2 x 2 2 y 2 that lies above the xy-plane and 
S has upward orientation.

 32.  Use Stokes’ Theorem to evaluate yyS curl F ! dS, where
Fsx, y, zd − x 2 yz i 1 yz2 j1 z3e xy k, S is the part of the 
sphere x 2 1 y 2 1 z2 − 5 that lies above the plane z − 1, 
and S is oriented upward.

;
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1212 CHAPTER 16  Vector Calculus

 39.  Find yyS F ! n dS, where Fsx, y, zd − x i 1 y j1 z k and S is 
the outwardly oriented surface shown in the figure (the 
boundary surface of a cube with a unit corner cube removed).

(0, 2, 2)
(2, 0, 2)

(2, 2, 0)S

y

z

x

1

11

 40.  If the components of F have continuous second partial deriva-
tives and S is the boundary surface of a simple solid region, 
show that yyS curl F ! dS − 0.

 41.   If a is a constant vector, r − x i 1 y j1 z k, and S is an ori-
ented, smooth surface with a simple, closed, smooth, posi-
tively oriented boundary curve C, show that

y
S

y 2a ! dS − y
C
 sa 3 rd ! dr
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