
 SECTION 15.1  Double Integrals over Rectangles 999
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 8.  The contour map shows the temperature, in degrees Fahrenheit, 
at 4:00 pm on February 26, 2007, in Colorado. (The state mea-
sures 388 mi west to east and 276 mi south to north.) Use  
the Midpoint Rule with m − n− 4 to estimate the average 
temperature in Colorado at that time.
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9–11 Evaluate the double integral by first identifying it as the  
volume of a solid.

 9. yyR s2  dA, R − hsx, yd | 2 < x < 6, 21 < y < 5j

 10. yyR s2x 1 1d dA, R − hsx, yd | 0 < x < 2, 0 < y < 4j

 11. yyR s4 2 2yd dA, R − f0, 1g 3 f0, 1g

 12.  The integral yyR s9 2 y 2  dA, where R − f0, 4g 3 f0, 2g,  
represents the volume of a solid. Sketch the solid.

13–14 Find y2
0  f sx, yd dx and y3

0  f sx, yd dy

 13. f sx, yd − x 1 3x 2y 2 14. f sx, yd − ysx 1 2 

15–26 Calculate the iterated integral.

 15. y4

1
 y2

0
 s6x 2y 2 2xd  dy dx 16. y1

0
y1

0
 sx 1 yd2 dx dy

 1. (a)  Estimate the volume of the solid that lies below the surface 
z − xy and above the rectangle

R − hsx, yd  |  0 < x < 6, 0 < y < 4j
    Use a Riemann sum with m − 3, n− 2, and take the  

sample point to be the upper right corner of each square.
 (b)  Use the Midpoint Rule to estimate the volume of the solid 

in part (a).

 2.  If R − f0, 4g 3 f21, 2g, use a Riemann sum with m − 2, 
n− 3 to estimate the value of yyR s1 2 xy 2d dA. Take the  
sample points to be (a) the lower right corners and (b) the upper 
left corners of the rectangles.

 3. (a)  Use a Riemann sum with m − n− 2 to estimate the value 
of yyR xe2xy dA, where R − f0, 2g 3 f0, 1g. Take the sample 
points to be upper right corners.

 (b)  Use the Midpoint Rule to estimate the integral in part (a).

 4. (a)  Estimate the volume of the solid that lies below the 
surface z − 1 1 x 2 1 3y and above the rectangle 
R − f1, 2g 3 f0, 3g. Use a Riemann sum with m − n− 2 
and choose the sample points to be lower left corners.

 (b)  Use the Midpoint Rule to estimate the volume in part (a).

 5.  Let V be the volume of the solid that lies under the graph 
of f sx, yd − s52 2 x 2 2 y 2 

 and above the rectangle given 
by 2 < x < 4, 2 < y < 6. Use the lines x − 3 and y − 4 to 
divide R into subrectangles. Let L and U be the Riemann sums 
computed using lower left corners and upper right corners, 
respectively. Without calculating the numbers V, L, and U, 
arrange them in increasing order and explain your reasoning.

 6.  A 20-ft-by-30-ft swimming pool is filled with water. The depth 
is measured at 5-ft intervals, starting at one corner of the pool, 
and the values are recorded in the table. Estimate the volume of 
water in the pool.
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 7.  A contour map is shown for a function f  on the square 
R − f0, 4g 3 f0, 4g.

 (a)  Use the Midpoint Rule with m − n− 2 to estimate the 
value of yyR f sx, yd dA.

 (b)  Estimate the average value of f .
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1000 CHAPTER 15  Multiple Integrals

 39.  Find the volume of the solid lying under the elliptic  
paraboloid x 2y4 1 y 2y9 1 z − 1 and above the rectangle 
R − f21, 1g 3 f22, 2g.

 40.  Find the volume of the solid enclosed by the surface 
z − x 2 1 xy 2 and the planes z − 0, x − 0, x − 5,  
and y − 62.

 41.  Find the volume of the solid enclosed by the surface 
z − 1 1 x 2ye y and the planes z − 0, x − 61, y − 0,  
and y − 1.

 42.  Find the volume of the solid in the first octant bounded by  
the cylinder z − 16 2 x 2 and the plane y − 5.

 43.  Find the volume of the solid enclosed by the paraboloid 
z − 2 1 x 2 1 sy 2 2d2 and the planes z − 1, x − 1, 
x − 21, y − 0, and y − 4.

 44.  Graph the solid that lies between the surface 
z − 2xyysx 2 1 1d and the plane z − x 1 2y and is bounded 
by the planes x − 0, x − 2, y − 0, and y − 4. Then find its 
volume.

 45.  Use a computer algebra system to find the exact value of the 
integral  yyR x

5y 3e xy dA, where R − f0, 1g 3 f0, 1g. Then use  
the CAS to draw the solid whose volume is given by the  
integral.

 46.  Graph the solid that lies between the surfaces 
z − e2x 2

 cossx 2 1 y 2d and z − 2 2 x 2 2 y 2 for | x | < 1, 
| y | < 1. Use a computer algebra system to approximate the 
volume of this solid correct to four decimal places.

47–48 Find the average value of f  over the given rectangle.

 47.  f sx, yd − x 2 y,   
R has vertices s21, 0d, s21, 5d, s1, 5d, s1, 0d

 48.  f sx, yd − e ysx 1 e y ,  R − f0, 4g 3 f0, 1g

49–50 Use symmetry to evaluate the double integral.

 49.  y
R

y 
xy

1 1 x 4  dA,  R − hsx, yd  |  21 < x < 1, 0 < y < 1j

 50. y
R

y s1 1 x 2 sin y 1 y 2 sin xd dA,  R − f2!, !g 3 f2!, !g

 51. Use a CAS to compute the iterated integrals 

y1

0
 y1

0
 

x 2 y
sx 1 yd3  dy dx    and    y1

0
 y1

0
 

x 2 y
sx 1 yd3  dx dy

   Do the answers contradict Fubini’s Theorem? Explain what  
is happening.

 52. (a)  In what way are the theorems of Fubini and Clairaut  
similar?

 (b) If f sx, yd is continuous on fa, bg 3 fc, d g and 

tsx, yd − y x

a
 yy

c
  f ss, td dt ds

   for a , x , b, c , y , d, show that txy − tyx − f sx, yd.

;

CAS

CAS

CAS

 17. y1

0
y2

1
 sx 1 e2yd dx dy

 18. y!y6

0
y!y2

0
 ssin x 1 sin yd dy dx

 19. y3

23
 y!y2

0
 sy 1 y 2 cos xd dx dy 20. y3

1
 y5

1
 
ln y
xy

 dy dx

 21. y4

1
 y2

1
 S x

y
1

y
xD dy dx 22. y1

0
y2

0
 ye x2y dx dy

 23. y3

0
y!y2

0
 t 2 sin3 " d" dt

 24. y1

0
 y1

0
 xysx 2 1 y 2  dy dx

 25. y1

0
 y1

0
 vsu 1 v2d4 du dv 26. y1

0
 y1

0
 ss 1 t  ds dt

27–34 Calculate the double integral.

 27. y
R

y x sec2 y dA,  R − hsx, yd  |  0 < x < 2, 0 < y < !y4j

 28. y
R

y sy 1 xy22d dA,  R − hsx, yd  |  0 < x < 2, 1 < y < 2j

 29. y
R

y 
xy 2

x 2 1 1
 dA,  R − hsx, yd  |  0 < x < 1, 23 < y < 3j

 30. y
R

y 
tan #

s1 2 t 2   dA,  R − hs#, td  |  0 < # < !y3, 0 < t < 1
2 j

 31. y
R

y x sinsx 1 yd dA,  R − f0, !y6g 3 f0, !y3g

 32. y
R

y 
x

1 1 xy
 dA,  R − f0, 1g 3 f0, 1g

 33. y
R

y ye2xy dA,  R − f0, 2g 3 f0, 3g

 34. y
R

y 
1

1 1 x 1 y
 dA,  R − f1, 3g 3 f1, 2g

35–36 Sketch the solid whose volume is given by the iterated  
integral.

 35. y1

0
 y1

0
 s4 2 x 2 2yd dx dy

 36. y1

0
 y1

0
 s2 2 x 2 2 y 2 d dy dx

 37.  Find the volume of the solid that lies under the plane 
 4x 1 6y 2 2z 1 15 − 0 and above the rectangle 
R − hsx, yd | 21 < x < 2, 21 < y < 1j.

 38.  Find the volume of the solid that lies under the hyperbolic 
paraboloid z − 3y 2 2 x 2 1 2 and above the rectangle 
R − f21, 1g 3 f1, 2g.
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1008 CHAPTER 15  Multiple Integrals

17–22 Evaluate the double integral.

 17. y
D

y x cos y dA,  D is bounded by y − 0, y − x 2, x − 1

 18. y
D

y sx 2 1 2yd dA,  D is bounded by y − x, y − x 3, x > 0

 19. y
D

y y 2 dA,  

  D is the triangular region with vertices (0, 1), (1, 2), s4, 1d

 20. y
D

y xy dA,  D is enclosed by the quarter-circle 

  y − s1 2 x 2 , x > 0, and the axes

 21. y
D

y s2x 2 yd dA,

  D is bounded by the circle with center the origin and radius 2

 22. y
D

y y dA,  D is the triangular region with vertices s0, 0d, 

  s1, 1d, and s4, 0d

23–32 Find the volume of the given solid.

 23.  Under the plane 3x 1 2y 2 z − 0 and above the region 
enclosed by the parabolas y − x 2 and x − y 2

 24.  Under the surface z − 1 1 x 2y2 and above the region 
enclosed by x − y 2 and x − 4

 25.  Under the surface z − xy and above the triangle with  
vertices s1, 1d, s4, 1d, and s1, 2d

 26.  Enclosed by the paraboloid z − x 2 1 y 2 1 1 and the planes 
x − 0, y − 0, z − 0, and x 1 y − 2

 27.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 28.  Bounded by the planes z − x, y − x, x 1 y − 2, and z − 0

 29.  Enclosed by the cylinders z − x 2, y − x 2 and the planes  
z − 0, y − 4

 30.  Bounded by the cylinder y 2 1 z2 − 4 and the planes x − 2y, 
x − 0, z − 0 in the first octant

 31.  Bounded by the cylinder x 2 1 y 2 − 1 and the planes y − z, 
x − 0, z − 0 in the first octant

 32. Bounded by the cylinders x 2 1 y 2 − r 2 and y 2 1 z2 − r 2

 33.  Use a graphing calculator or computer to estimate the  
x-coordinates of the points of intersection of the curves 
y − x 4 and y − 3x 2 x 2. If D is the region bounded by these 
curves, estimate yyD x dA.

;

1–6 Evaluate the iterated integral.

 1. y5

1
yx

0
 s8x 2 2yd dy dx 2. y2

0
yy2

0
 x 2y dx dy

 3. y1

0
yy

0
 xe y3 

dx dy 4. y!y2

0
yx

0
 x sin y dy dx

 5. y1

0
 ys2

0
 cosss 3d dt ds 6. y1

0
yev

0
  s1 1 ev 

 dw dv

7–10 Evaluate the double integral.

 7. y
D

y 
y

x 2 1 1
 dA, D − hsx, yd  |  0 < x < 4, 0 < y < sx j

 8. y
D

y s2x 1 yd dA, D − hsx, yd  |  1 < y < 2, y 2 1 < x < 1j

 9. y
D

y e2y 2
 dA, D − hsx, yd  |  0 < y < 3, 0 < x < yj

 10. y
D

y ysx 2 2 y 2  dA, D − hsx, yd  |  0 < x < 2, 0 < y < xj

 11. Draw an example of a region that is
 (a)  type I but not type II
 (b) type II but not type I

 12. Draw an example of a region that is
 (a)  both type I and type II
 (b) neither type I nor type II

13–14 Express D as a region of type I and also as a region of  
type II. Then evaluate the double integral in two ways.

 13. y
D

y x dA, D is enclosed by the lines y − x, y − 0, x − 1

 14. y
D

y xy dA,  D is enclosed by the curves y − x 2, y − 3x

15–16 Set up iterated integrals for both orders of integration. 
Then evaluate the double integral using the easier order and 
explain why it’s easier.

 15. y
D

y y dA,  D is bounded by y − x 2 2, x − y 2

 16. y
D

y y 2e xy dA,  D is bounded by y − x, y − 4, x − 0
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 SECTION 15.2  Double Integrals over General Regions 1009

 53. y1

0
y1

sx 
 sy 3 1 1

 

 dy dx

 54. y2

0
y1

yy2
 y cossx 3 2 1d dx dy

 55. y1

0
 y!y2

arcsin y
 cos x s1 1 cos2x  dx dy

 56. y8

0
 y2

s3 y 
 ex 4

 dx dy

57–58 Express D as a union of regions of type I or type II and 
evaluate the integral.

 57. y
D

y x 2 dA 58. y
D

y y dA

0

1

_1

_1 1

D
(1, 1)

x

y

      

0

_1

1

_1

x=y-Á
y=(x+1)@

y

x

59–60 Use Property 11 to estimate the value of the integral.

 59.  y
S

y s4 2 x 2 y 2  dA,  S − hsx, yd | x 2 1 y 2 < 1, x > 0j

 60.  y
T

y sin4sx 1 yd dA,  T is the triangle enclosed by the lines 

  y − 0, y − 2x, and x − 1

61–62 Find the averge value of f  over the region D.

 61.  f sx, yd − xy,  D is the triangle with vertices s0, 0d, s1, 0d,  
and s1, 3d

 62.  f sx, yd − x sin y,  D is enclosed by the curves y − 0,  
y − x 2, and x − 1

 63. Prove Property 11.

 64.  In evaluating a double integral over a region D, a sum of  
iterated integrals was obtained as follows:

y
D

y f sx, yd dA − y1

0
 y2y

0
 f sx, yd dx dy 1 y3

1
 y32y

0
 f sx, yd dx dy

   Sketch the region D and express the double integral as an  
iterated integral with reversed order of integration.

 34.  Find the approximate volume of the solid in the first octant  
that is bounded by the planes y − x, z − 0, and z − x and 
the cylinder y − cos x. (Use a graphing device to estimate 
the points of intersection.)

35–38 Find the volume of the solid by subtracting two volumes.

 35.  The solid enclosed by the parabolic cylinders y − 1 2 x 2,  
y − x 2 2 1 and the planes x 1 y 1 z − 2, 
2x 1 2y 2 z 1 10 − 0

 36.  The solid enclosed by the parabolic cylinder y − x 2 and the 
planes z − 3y, z − 2 1 y

 37.  The solid under the plane z − 3, above the plane z − y, and 
between the parabolic cylinders y − x 2 and y − 1 2 x 2

 38.  The solid in the first octant under the plane z − x 1 y, above 
the surface z − xy, and enclosed by the surfaces x − 0, 
y − 0, and x 2 1 y 2 − 4

39–40 Sketch the solid whose volume is given by the iterated  
integral.

 39. y1

0
 y12x

0
 s1 2 x 2 yd dy dx 40. y1

0
 y12x2

0
 s1 2 xd dy dx

41–44 Use a computer algebra system to find the exact volume 
of the solid.

 41.  Under the surface z − x 3y 4 1 xy 2 and above the region 
bounded by the curves y − x 3 2 x and y − x 2 1 x  
for x > 0

 42.  Between the paraboloids z − 2x 2 1 y 2 and 
z − 8 2 x 2 2 2y 2 and inside the cylinder x 2 1 y 2 − 1

 43. Enclosed by z − 1 2 x 2 2 y 2 and z − 0

 44. Enclosed by z − x 2 1 y 2 and z − 2y

45–50 Sketch the region of integration and change the order of 
integration.

 45. y1

0
 yy

0
 f sx, yd dx dy 46. y2

0
 y4

x2
 f sx, yd dy dx

 47. y!y2

0
 ycos x

0
 f sx, yd dy dx 48. y2

22
 ys42y2

0
 f sx, yd dx dy

 49. y2

1
 y ln

 
x

0
 f sx, yd dy dx 50. y1

0
 y!y4

arctan x
 f sx, yd dy dx

51–56 Evaluate the integral by reversing the order of integration.

 51. y1

0
 y3

3y
 e x 2 

dx dy 52. y1

0
y1

x2
 sy  sin y dy dx

;

CAS
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1010 CHAPTER 15  Multiple Integrals

Suppose that we want to evaluate a double integral yyR f sx, yd dA, where R is one of the 
regions shown in Figure 1. In either case the description of R in terms of rectangular 
coordinates is rather complicated, but R is easily described using polar coordinates.

x0

y

R
≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨) | 1¯r¯2, 0¯¨¯πd

Recall from Figure 2 that the polar coordinates sr, "d of a point are related to the rect-
angular coordinates sx, yd by the equations

r 2 − x 2 1 y 2      x − r cos "      y − r sin "

(See Section 10.3.)
The regions in Figure 1 are special cases of a polar rectangle

R − hsr, "d  | a < r < b, # < " < $j

which is shown in Figure 3. In order to compute the double integral yyR f sx, yd dA, where 
R is a polar rectangle, we divide the interval fa, bg into m subintervals fri21, rig of equal 
width Dr − sb 2 adym and we divide the interval f#, $g into n  subintervals f"j21, "jg  
of equal width D" − s$ 2 #dyn . Then the circles r − ri and the rays " − "j divide the 
polar rectangle R into the small polar rectangles Rij shown in Figure 4.

FIGURE 1

O

y

x
¨

x

yr

P(r, ¨)=P(x, y)

FIGURE 2

65–69 Use geometry or symmetry, or both, to evaluate the  
double integral.

 65.  y
D

y sx 1 2d dA,  

  D − hsx, yd  |  0 < y < s9 2 x 2 j

 66.  y
D

y sR 2 2 x 2 2 y 2  dA,  

  D is the disk with center the origin and radius R

 67.  y
D

y s2x 1 3yd dA,  

  D is the rectangle 0 < x < a, 0 < y < b

 68.  y
D

y s2 1 x 2y 3 2 y 2 sin xd dA,  

  D − hsx, yd | | x | 1 | y | < 1j

 69.  y
D

y sax 3 1 by 3 1 sa 2 2 x 2 d dA,  

  D − f2a, ag 3 f2b, bg

 70.  Graph the solid bounded by the plane x 1 y 1 z − 1 and  
the paraboloid z − 4 2 x 2 2 y 2 and find its exact volume. 
(Use your CAS to do the graphing, to find the equations of  
the boundary curves of the region of integration, and to 
evaluate the double integral.)

CAS
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1014 CHAPTER 15  Multiple Integrals

EXAMPLE 4 Find the volume of the solid that lies under the paraboloid z − x 2 1 y 2, 
above the xy-plane, and inside the cylinder x 2 1 y 2 − 2x.

SOLUTION The solid lies above the disk D whose boundary circle has equation 
x 2 1 y 2 − 2x or, after completing the square,

sx 2 1d2 1 y 2 − 1

(See Figures 9 and 10.)
In polar coordinates we have x 2 1 y 2 − r 2 and x − r cos !, so the boundary circle 

becomes r 2 − 2r cos !, or r − 2 cos !. Thus the disk D is given by

D − hsr, !d | 2"y2 < ! < "y2, 0 < r < 2 cos ! j

and, by Formula 3, we have

 V − y
D

y sx 2 1 y 2 d dA − y"y2

2"y2
 y2

 
cos !

0
 r 2 r dr d! − y"y2

2"y2
 F r 4

4 G0

2 cos !

 d!

− 4 y"y2

2"y2
 cos4! d! − 8 y"y2

0
 cos4! d! − 8 y"y2

0
 S 1 1 cos 2!

2 D2

 d!

 − 2 y"y2

0
 f1 1 2 cos 2! 1 1

2 s1 1 cos 4!dg d!

  − 2f3
2 ! 1 sin 2! 1 1

8 sin 4!g0

"y2
− 2S 3

2DS"

2 D −
3"

2
 Q

FIGURE 9

0

y

x1 2

D

(x-1)@+¥=1
(or  r=2 cos ¨)

FIGURE 10
y

x

z

1–4 A region R is shown. Decide whether to use polar coordinates 
or rectangular coordinates and write yy

R
 f sx, yd dA as an iterated 

integral, where  f  is an arbitrary continuous function on R.

 1. 

0
52

5

2

y

x

R

 2. 

0_1 1

1
y

x

R

 3. 

0
1_1

y

x
R

_1

 4. 

0 3

y

x

R

_3

5 –6 Sketch the region whose area is given by the integral and 
evaluate the integral.

 5. y3"y4

"y4
 y2

1
 r dr d! 6. y"

"y2
 y2 sin !

0
 r dr d!

7–14 Evaluate the given integral by changing to polar coordinates.

 7.  yy
D
 x 2y dA, where D is the top half of the disk with center the 

origin and radius 5

 8.  yy
R
 s2x 2 yd dA, where R is the region in the first quadrant 

enclosed by the circle x 2 1 y 2 − 4 and the lines x − 0  
and y − x

 9.  yy
R
 sinsx 2 1 y 2d dA, where R is the region in the first quadrant 

between the circles with center the origin and radii 1 and 3

 10.  y
R

y 
y 2

x 2 1 y 2  dA, where R is the region that lies between the 

  circles x 2 1 y 2 − a2 and x 2 1 y 2 − b2 with 0 , a , b

 11.  yy
D
 e2x22y2

 dA, where D is the region bounded by the semi-

  circle x − s4 2 y 2  and the y-axis
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 SECTION 15.3  Double Integrals in Polar Coordinates 1015

 31. y1y2

0
ys12y2

 

s3
 

y
xy 2 dx dy

 32. y2

0
 ys2x2x2

 

0  sx 2 1 y 2 
 dy dx

33–34 Express the double integral in terms of a single integral with 
respect to r. Then use your calculator to evaluate the integral correct 
to four decimal places.

 33.  yy
D
 e sx21y2d2 dA, where D is the disk with center the origin and 

radius 1

 34.   yyD xys1 1 x 2 1 y 2  dA, where D is the portion of the disk 

   x 2 1 y 2 < 1 that lies in the first quadrant

 35.  A swimming pool is circular with a 40-ft diameter. The depth 
is constant along east-west lines and increases linearly from 
2 ft at the south end to 7 ft at the north end. Find the volume of 
water in the pool.

 36.  An agricultural sprinkler distributes water in a circular pattern 
of radius 100 ft. It supplies water to a depth of e2r feet per hour 
at a distance of r feet from the sprinkler.

 (a)  If 0 , R < 100, what is the total amount of water supplied 
per hour to the region inside the circle of radius R centered 
at the sprinkler?

 (b)  Determine an expression for the average amount of water 
per hour per square foot supplied to the region inside the 
circle of radius R.

 37.  Find the average value of the function f sx, yd − 1ysx 2 1 y2  
on the annular region a 2 < x 2 1 y2 < b2, where 0 , a , b.

 38.  Let D be the disk with center the origin and radius a. What is 
the average distance from points in D to the origin?

 39.  Use polar coordinates to combine the sum

y1

1ys2
 
 yx

s12x2
 

 
 xy dy dx 1 ys2

1
 yx

0
 xy dy dx 1 y2

s2
 ys42x2

 

0  xy dy dx

  into one double integral. Then evaluate the double integral.

 40. (a)  We define the improper integral (over the entire plane R2d

 I − y
R2

y 
e2sx2 1 y2d dA

 − y`

2`
 y`

2`
 e2sx21y2d dy dx

 − lim
al`

y
Da

y e2sx21y2d dA

    where Da is the disk with radius a and center the origin.  
Show that

y`

2`
 y`

2`
 e2sx21y2d dA − "

 12.  yyD cos sx 2 1 y 2  dA, where D is the disk with center the  
origin and radius 2

 13.  yyR arctans yyxd dA,
  where R − hsx, yd | 1 < x 2 1 y 2 < 4, 0 < y < xj

 14.  yyD x dA, where D is the region in the first quadrant that lies 
between the circles x 2 1 y 2 − 4 and x 2 1 y 2 − 2x

15–18 Use a double integral to find the area of the region.

 15. One loop of the rose r − cos 3!

 16.  The region enclosed by both of the cardioids r − 1 1 cos !  
and r − 1 2 cos !

 17.  The region inside the circle sx 2 1d2 1 y 2 − 1 and outside the 
circle x 2 1 y 2 − 1

 18.  The region inside the cardioid r − 1 1 cos ! and outside the 
circle r − 3 cos !

19–27 Use polar coordinates to find the volume of the given solid.

 19.  Under the paraboloid z − x 2 1 y 2 and above the disk 
x 2 1 y 2 < 25

 20.  Below the cone z − sx 2 1 y 2 

 and above the ring 
1 < x 2 1 y 2 < 4

 21.  Below the plane 2x 1 y 1 z − 4 and above the disk 
x 2 1 y 2 < 1

 22.  Inside the sphere x 2 1 y 2 1 z 2 − 16 and outside the  
cylinder x 2 1 y 2 − 4

 23. A sphere of radius a

 24.  Bounded by the paraboloid z − 1 1 2x 2 1 2y 2 and the  
plane z − 7 in the first octant

 25.  Above the cone z − sx 2 1 y 2  and below the sphere 
x 2 1 y 2 1 z2 − 1

 26.  Bounded by the paraboloids z − 6 2 x 2 2 y 2 and 
z − 2x 2 1 2y 2

 27.  Inside both the cylinder x 2 1 y 2 − 4 and the ellipsoid 
4x 2 1 4y 2 1 z2 − 64

 28. (a)  A cylindrical drill with radius r1 is used to bore a hole 
through the center of a sphere of radius r2. Find the volume 
of the ring-shaped solid that remains.

 (b)  Express the volume in part (a) in terms of the height h of 
the ring. Notice that the volume depends only on h, not  
on r1 or r2.

29–32 Evaluate the iterated integral by converting to polar  
coordinates.

 29. y2

0
ys42x2 

0
 e2x 22y 2

 dy dx 30. ya

0
ysa22y2

 

2sa22y2
 s2x 1 yd dx dy
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1016 CHAPTER 15  Multiple Integrals

 (c) Deduce that
y`

2`
 e2x2 dx − s"  

 (d)  By making the change of variable t − s2 x, show that

y`

2`
 e2x2y2 dx − s2"  

   (This is a fundamental result for probability and statistics.)

 41.  Use the result of Exercise 40 part (c) to evaluate the following 
integrals.

 (a) y`

0
 x 2e2x2 dx (b) y`

0
 sx e2x dx

 (b)  An equivalent definition of the improper integral in part (a) 
is

y
R2

y e2sx21y2d dA − lim
al `

y
Sa

y  
  e2sx21y2d dA

   where Sa is the square with vertices s6a, 6ad. Use this to 
show that

y`

2`
 e2x2 dx y`

2`
 e2y2 dy − "

We have already seen one application of double integrals: computing volumes. Another 
geometric application is finding areas of surfaces and this will be done in the next sec-
tion. In this section we explore physical applications such as computing mass, electric 
charge, center of mass, and moment of inertia. We will see that these physical ideas are 
also important when applied to probability density functions of two random variables.

Density and Mass
In Section 8.3 we were able to use single integrals to compute moments and the center of 
mass of a thin plate or lamina with constant density. But now, equipped with the double 
integral, we can consider a lamina with variable density. Suppose the lamina occupies a 
region D of the xy-plane and its density (in units of mass per unit area) at a point sx, yd in 
D is given by #sx, yd, where # is a continuous function on D. This means that

#sx, yd − lim 
Dm
DA

where Dm and DA are the mass and area of a small rectangle that contains sx, yd and 
the limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass m of the lamina we divide a rectangle R containing D into sub-
rectangles Rij of the same size (as in Figure 2) and consider #sx, yd to be 0 outside D. If 
we choose a point sxij*, yij*d in Rij, then the mass of the part of the lamina that occupies Rij 
is approximately #sxij*, yij*d DA, where DA is the area of Rij. If we add all such masses, we 
get an approximation to the total mass:

m < o
k

i−1
 o

l

j−1
 #sxij*, yij*d DA

If we now increase the number of subrectangles, we obtain the total mass m of the lamina 
as the limiting value of the approximations:

1  m − lim
k, l l `

 o
k

i−1
 o

l

j−1
 #sxij*, yij*d DA − y

D

y #sx, yd dA 

Physicists also consider other types of density that can be treated in the same manner. 
For example, if an electric charge is distributed over a region D and the charge density 

0 x

y

D

(x, y)

FIGURE 1

Rij
y

0 x

(xij, yij)* *

FIGURE 2
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1024 CHAPTER 15  Multiple Integrals

In the next example we deal with normal distributions. As in Section 8.5, a single 
random variable is normally distributed if its probability density function is of the form

f sxd −
1

!s2" 
 e2sx2#d2ys2!2d

where # is the mean and ! is the standard deviation.

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as 
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally distrib-
uted with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y are normally 
distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that X and Y are 
independent, write the joint density function and graph it. Find the probability that a 
bearing randomly chosen from the production line has either length or diameter that 
differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y  are normally distributed with #1 − 4.0, 
#2 − 6.0, and !1 − !2 − 0.01. So the individual density functions for X and Y  are

f1sxd −
1

0.01s2" 
 e2sx24d2y0.0002      f2syd −

1

0.01s2" 
 e2s y26d2y0.0002

Since X and Y  are independent, the joint density function is the product:

 f sx, yd − f1sxd f2syd

 −
1

0.0002"
 e2sx24d2y0.0002e2sy26d2y0.0002

 −
5000

"
 e25000fsx24d21s y26d2g

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y  differ from their means by less 

than 0.02 cm. Using a calculator or computer to estimate the integral, we have

 Ps3.98 , X , 4.02, 5.98 , Y , 6.02d − y4.02

3.98
 y6.02

5.98
 f sx, yd dy dx

 −
5000

"
 y4.02

3.98
 y6.02

5.98
 e25000fsx24d21s y26d2g dy dx

 < 0.91

Then the probability that either X or Y  differs from its mean by more than 0.02 cm is 
approximately

 1 2 0.91 − 0.09 Q

1500
1000
500

0

y
6.05

6
5.95

x
4.05

4
3.95

z

FIGURE 9  
Graph of the bivariate normal joint 
density function in Example 8

 1.  Electric charge is distributed over the rectangle 0 < x < 5,  
2 < y < 5 so that the charge density at sx, yd is 
! sx, yd − 2x 1 4y (measured in coulombs per square meter). 
Find the total charge on the rectangle.

 2.  Electric charge is distributed over the disk x 2 1 y 2 < 1 so 
   that the charge density at sx, yd is ! sx, yd − sx 2 1 y 2   

(measured in coulombs per square meter). Find the total charge 
on the disk.

3–10 Find the mass and center of mass of the lamina that occupies 
the region D and has the given density function $.

 3. D − hsx, yd | 1 < x < 3, 1 < y < 4j; $sx, yd − ky 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 15.4  Applications of Double Integrals 1025

21–24 A lamina with constant density $sx, yd − $ occupies the 
given region. Find the moments of inertia Ix and Iy and the radii 
of gyration x and y.

 21.  The rectangle 0 < x < b, 0 < y < h

 22.  The triangle with vertices s0, 0d, sb, 0d, and s0, hd

 23.  The part of the disk x 2 1 y 2 < a2 in the first quadrant

 24.  The region under the curve y − sin x from x − 0 to x − "

25–26  Use a computer algebra system to find the mass, center  
of mass, and moments of inertia of the lamina that occupies the 
region D and has the given density function.

 25.  D is enclosed by the right loop of the four-leaved rose 
r − cos 2%;  $sx, yd − x 2 1 y 2

 26. D − hsx, yd | 0 < y < xe2x, 0 < x < 2 j;  $sx, yd − x 2y 2

 27.  The joint density function for a pair of random variables X 
and Y is

f sx, yd − HCxs1 1 yd
0

if 0 < x < 1, 0 < y < 2
otherwise

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1d.
 (c) Find PsX 1 Y < 1d.

 28. (a) Verify that

f sx, yd − H4xy
0

if 0 < x < 1, 0 < y < 1
otherwise

  is a joint density function.
 (b)  If X and Y are random variables whose joint density 

function is the function f  in part (a), find
 (i) PsX > 1

2 d (ii) PsX > 1
2, Y < 1

2 d
 (c) Find the expected values of X and Y.

 29.  Suppose X and Y are random variables with joint density  
function

f sx, yd − H0.1e2s0.5x10.2yd

0
if x > 0, y > 0
otherwise

 (a) Verify that f  is indeed a joint density function.
 (b) Find the following probabilities.
 (i) PsY > 1d (ii) PsX < 2, Y < 4d
 (c) Find the expected values of X and Y.

 30. (a)  A lamp has two bulbs, each of a type with average 
lifetime 1000 hours. Assuming that we can model the 
probability of failure of a bulb by an exponential den-
sity function with mean # − 1000, find the probability 
that both of the lamp’s bulbs fail within 1000 hours.

 (b)  Another lamp has just one bulb of the same type as in 
part (a). If one bulb burns out and is replaced by a bulb  
of the same type, find the probability that the two bulbs 
fail within a total of 1000 hours.

CAS

 4.  D − hsx, yd | 0 < x < a, 0 < y < bj; 
$sx, yd − 1 1 x 2 1 y 2

 5.  D is the triangular region with vertices s0, 0d, s2, 1d, s0, 3d;  
$sx, yd − x 1 y

 6.  D is the triangular region enclosed by the lines y − 0, 
y − 2x, and x 1 2y − 1; $sx, yd − x

 7.  D is bounded by y − 1 2 x 2 and y − 0; $sx, yd − ky

 8.  D is bounded by y − x 1 2 and y − x 2; $sx, yd − kx 2

 9.  D is bounded by the curves y − e2x, y − 0, x − 0, x − 1; 
$sx, yd − xy

 10.  D is enclosed by the curves y − 0 and y − cos x, 
2"y2 < x < "y2; $sx, yd − y

 11.  A lamina occupies the part of the disk x 2 1 y 2 < 1 in the 
first quadrant. Find its center of mass if the density at any 
point is proportional to its distance from the x-axis.

 12.  Find the center of mass of the lamina in Exercise 11 if the  
density at any point is proportional to the square of its  
distance from the origin.

 13.  The boundary of a lamina consists of the semicircles 
   y − s1 2 x 2  and y − s4 2 x 2  together with the portions  

of the x-axis that join them. Find the center of mass of 
the lamina if the density at any point is proportional to its 
distance from the origin.

 14.  Find the center of mass of the lamina in Exercise 13 if the 
density at any point is inversely proportional to its distance 
from the origin.

 15.  Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length a if the density 
at any point is proportional to the square of the distance 
from the vertex opposite the hypotenuse.

 16.  A lamina occupies the region inside the circle x 2 1 y 2 − 2y 
but outside the circle x 2 1 y 2 − 1. Find the center of mass 
if the density at any point is inversely proportional to its 
distance from the origin.

 17.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 3.

 18.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 6.

 19.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 15.

 20.  Consider a square fan blade with sides of length 2 and the 
lower left corner placed at the origin. If the density of the 
blade is $sx, yd − 1 1 0.1x, is it more difficult to rotate the 
blade about the x-axis or the y-axis?
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1026 CHAPTER 15  Multiple Integrals

 33.  When studying the spread of an epidemic, we assume that 
the probability that an infected individual will spread the 
disease to an uninfected individual is a function of the dis-
tance between them. Consider a circular city of radius 
10 miles in which the population is uniformly distributed. 
For an uninfected individual at a fixed point Asx0, y0 d, 
assume that the probability function is given by

f sPd − 1
20 f20 2 dsP, Adg

  where dsP, Ad denotes the distance between points P and A.
 (a)  Suppose the exposure of a person to the disease is the  

sum of the probabilities of catching the disease from all 
members of the population. Assume that the infected  
people are uniformly distributed throughout the city, 
with k infected individuals per square mile. Find a  
double integral that represents the exposure of a person 
residing at A.

 (b)  Evaluate the integral for the case in which A is the cen-
ter of the city and for the case in which A is located on 
the edge of the city. Where would you prefer to live?

 31.  Suppose that X and Y are independent random variables, 
where X is normally distributed with mean 45 and standard 
deviation 0.5 and Y is normally distributed with mean 20 
and standard deviation 0.1.

 (a) Find Ps40 < X < 50, 20 < Y < 25d.
 (b) Find Ps4sX 2 45d2 1 100sY 2 20d2 < 2d.

 32.  Xavier and Yolanda both have classes that end at noon and 
they agree to meet every day after class. They arrive at the 
coffee shop independently. Xavier’s arrival time is X and 
Yolanda’s arrival time is Y, where X and Y are measured in 
minutes after noon. The individual density functions are

f1sxd − He2x

0
if x > 0
if x , 0

  f2syd − H 1
50 y
0

if 0 < y < 10
otherwise

   (Xavier arrives sometime after noon and is more likely  
to arrive promptly than late. Yolanda always arrives by  
12:10 pm and is more likely to arrive late than promptly.) 
After Yolanda arrives, she’ll wait for up to half an hour for 
Xavier, but he won’t wait for her. Find the probability that 
they meet.

CAS

In this section we apply double integrals to the problem of computing the area of a 
surface. In Section 8.2 we found the area of a very special type of surface––a surface of 
revolution––by the methods of single-variable calculus. Here we compute the area of a 
surface with equation z − f sx, yd, the graph of a function of two variables.

Let S be a surface with equation z − f sx, yd, where f  has continuous partial deriva-
tives. For simplicity in deriving the surface area formula, we assume that f sx, yd > 0 and 
the domain D of f  is a rectangle. We divide D into small rectangles Rij with area 
DA − Dx Dy. If sxi, yjd is the corner of Rij closest to the origin, let Pijsxi, yj, f sxi, yjdd be 
the point on S directly above it (see Figure 1). The tangent plane to S at Pij is an approx-
imation to S near Pij. So the area DTij of the part of this tangent plane (a parallelogram) 
that lies directly above Rij is an approximation to the area DSij of the part of S that lies 
directly above Rij. Thus the sum o o  DTij is an approximation to the total area of S, and 
this approximation appears to improve as the number of rectangles increases. Therefore 
we define the surface area of S to be

1  AsSd − lim
m, nl`

 o
m

i−1
 o

n

j−1
 DTij 

To find a formula that is more convenient than Equation 1 for computational purposes, 
we let a and b be the vectors that start at Pij and lie along the sides of the parallelogram  
with area DTij. (See Figure 2.) Then DTij − | a 3 b |. Recall from Section 14.3 that 
fxsxi, yjd and fysxi, yjd are the slopes of the tangent lines through Pij in the directions of a 
and b. Therefore

 a − Dx i 1 fxsxi, yjd Dx k

 b − Dy j 1 fysxi, yjd Dy k

In Section 16.6 we will deal with 
areas of more general surfaces, called 
parametric surfaces, and so this section 
need not be covered if that later section 
will be covered.

FIGURE 1 
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Using Formula 2 with f sx, yd − x 2 1 2y, we get

 A − y
T

y ss2xd2 1 s2d2 1 1 dA − y1

0
 y x

0
 s4x 2 1 5 dy dx

 − y1

0
 xs4x 2 1 5 dx − 1

8 ? 2
3s4x 2 1 5d3y2g0

1
− 1

12 (27 2 5s5 )

Figure 4 shows the portion of the surface whose area we have just computed. Q

EXAMPLE 2 Find the area of the part of the paraboloid z − x 2 1 y 2 that lies under the 
plane z − 9.

SOLUTION The plane intersects the paraboloid in the circle x 2 1 y 2 − 9, z − 9. There-
fore the given surface lies above the disk D with center the origin and radius 3. (See 
Figure 5.) Using Formula 3, we have

 A − y
D

y Î1 1 S −z
−xD2

1 S −z
−yD2

  dA − y
D

ys1 1 s2xd2 1 s2yd2  dA

 − y
D

y s1 1 4sx 2 1 y 2 d dA

Converting to polar coordinates, we obtain

 A − y2"

0
 y3

0
 s1 1 4r 2  r dr d% − y2"

0
 d% y3

0
 18 s1 1 4r 2  s8rd dr

  − 2"(1
8) 2

3s1 1 4r 2 d3y2g0

3
−

"

6
 (37s37 2 1) Q

y
x

z

T

FIGURE 4

9 

x 

z 

y 3 
D 

FIGURE 5

1–12 Find the area of the surface.

 1.  The part of the plane 5x 1 3y 2 z 1 6 − 0 that lies above the  
rectangle f1, 4g 3 f2, 6g

 2.  The part of the plane 6x 1 4y 1 2z − 1 that lies inside the 
cylinder x 2 1 y 2 − 25

 3.  The part of the plane 3x 1 2y 1 z − 6 that lies in the  
first octant

 4.  The part of the surface 2y 1 4z 2 x 2 − 5 that lies above the 
triangle with vertices s0, 0d, s2, 0d, and s2, 4d

 5.  The part of the paraboloid z − 1 2 x 2 2 y 2 that lies above the 
plane z − 22

 6.  The part of the cylinder x 2 1 z 2 − 4 that lies above the square 
with vertices s0, 0d, s1, 0d, s0, 1d, and s1, 1d

 7.  The part of the hyperbolic paraboloid z − y 2 2 x 2 that lies 
between the cylinders x 2 1 y 2 − 1 and x 2 1 y 2 − 4

 8. The surface z − 2
3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 9.  The part of the surface z − xy that lies within the cylinder 
x 2 1 y 2 − 1

 10.  The part of the sphere x 2 1 y 2 1 z2 − 4 that lies above the 
plane z − 1

 11.  The part of the sphere x 2 1 y 2 1 z2 − a 2 that lies within the 
cylinder x 2 1 y 2 − ax and above the xy-plane

 12.  The part of the sphere x 2 1 y 2 1 z2 − 4z that lies inside the 
paraboloid z − x 2 1 y 2

13–14 Find the area of the surface correct to four decimal places 
by expressing the area in terms of a single integral and using your 
calculator to estimate the integral.

 13.  The part of the surface z − 1ys1 1 x 2 1 y 2d that lies above the 
disk x 2 1 y 2 < 1

 14.  The part of the surface z − cossx 2 1 y 2d that lies inside the 
cylinder x 2 1 y 2 − 1
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 SECTION 15.6  Triple Integrals 1029

 21.  Show that the area of the part of the plane z − ax 1 by 1 c 
that projects onto a region D in the xy-plane with area AsDd 

  is sa 2 1 b 2 1 1 AsDd.

 22.  If you attempt to use Formula 2 to find the area of the top 
half of the sphere x 2 1 y 2 1 z2 − a 2, you have a slight 
problem because the double integral is improper. In fact, the 
integrand has an infinite discontinuity at every point of the 
boundary circle x 2 1 y 2 − a 2. However, the integral can  
be computed as the limit of the integral over the disk 
x 2 1 y 2 < t 2 as t l a 2. Use this method to show that the 
area of a sphere of radius a is 4"a 2.

 23.  Find the area of the finite part of the paraboloid y − x 2 1 z 2 
cut off by the plane y − 25. [Hint: Project the surface onto 
the xz-plane.]

 24.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z 

y 
x 

 15. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with four squares to estimate the surface area  
of the portion of the paraboloid z − x 2 1 y 2 that lies 
above the square f0, 1g 3 f0, 1g.

 (b)  Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare 
with the answer to part (a).

 16. (a)  Use the Midpoint Rule for double integrals with 
m − n − 2 to estimate the area of the surface 
z − xy 1 x 2 1 y 2, 0 < x < 2, 0 < y < 2.

 (b)  Use a computer algebra system to approximate the sur-
face area in part (a) to four decimal places. Compare 
with the answer to part (a).

 17.  Find the exact area of the surface z − 1 1 2x 1 3y 1 4y 2, 
1 < x < 4, 0 < y < 1.

 18.  Find the exact area of the surface

z − 1 1 x 1 y 1 x 2     22 < x < 1  21 < y < 1

  Illustrate by graphing the surface.

 19.  Find, to four decimal places, the area of the part of the 
surface z − 1 1 x 2 y 2 that lies above the disk x 2 1 y 2 < 1.

 20.  Find, to four decimal places, the area of the part of the  
surface z − s1 1 x 2 dys1 1 y 2 d that lies above the square 
| x | 1 | y | < 1. Illustrate by graphing this part of the 
surface.

CAS

CAS

CAS

CAS

CAS

CAS

Just as we defined single integrals for functions of one variable and double integrals 
for functions of two variables, so we can define triple integrals for functions of three 
variables. Let’s first deal with the simplest case where f  is defined on a rectangular box:

1  B − hsx, y, zd  |  a < x < b, c < y < d, r < z < s j  

The first step is to divide B into sub-boxes. We do this by dividing the interval fa, bg into 
l subintervals fxi21, xig of equal width Dx, dividing fc, dg into m subintervals of width Dy, 
and dividing fr, sg into n subintervals of width Dz. The planes through the endpoints of 
these subintervals parallel to the coordinate planes divide the box B into lmn sub-boxes

Bi jk − fxi21, xig 3 fyj21, yjg 3 fzk21, zk g

which are shown in Figure 1. Each sub-box has volume DV − Dx Dy Dz.
Then we form the triple Riemann sum

2  o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxij k* , yij k* , zij k* d DV  

where the sample point sxi jk* , yi jk* , zi jk* d is in Bi jk. By analogy with the definition of a 
double integral (15.1.5), we define the triple integral as the limit of the triple Riemann 
sums in (2).

B

Bijk

ÎxÎy

Îz

z

yx

z

yx

FIGURE 1
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Because of the symmetry of E and ! about the xz-plane, we can immediately say that 
Mxz − 0 and therefore y − 0. The other moments are

 Myz − y y
E

y x! dV − y1

21
 y1

y2
 y x

0
 x! dz dx dy

 − ! y1

21
 y1

y2
 x 2 dx dy − ! y1

21
 F x 3

3 Gx−y2

x−1
 
dy

 −
2!

3
 y1

0
 s1 2 y 6 d dy −

2!

3
 Fy 2

y 7

7 G0

1

−
4!

7

 Mxy − y y
E

y z! dV − y1

21
 y1

y2 y x

0
 z! dz dx dy

 − ! y1

21
 y1

y2

 F z2

2 Gz−0

z−x

 dx dy −
!

2
 y1

21
 y1

y2
 x 2 dx dy

 −
!

3
 y1

0
 s1 2 y 6 d dy −

2!

7

Therefore the center of mass is

 sx, y, z d − SMyz

m
, 

Mxz

m
, 

Mxy

m D − (5
7 , 0, 5

14 ) Q

 1.  Evaluate the integral in Example 1, integrating first with 
respect to y, then z, and then x.

 2. Evaluate the integral yyy E sxy 1 z 2d dV, where

E − 5sx, y, zd | 0 < x < 2, 0 < y < 1, 0 < z < 36
  using three different orders of integration.

3–8 Evaluate the iterated integral.

 3. y2

0
 yz2

0
 yy2z

0
 s2x 2 yd dx dy dz

 4. y1

0
y2y

y
yx1y

0
 6xy dz dx dy

 5. y2

1
 y2z

0
 y ln x

0
 xe2y dy dx dz

 6. y1

0
 y1

0
ys12z2

 

0
 

z
y 1 1  dx dz dy

 7. y"

0
 y1

0
ys12z2 

0
 z sin x dy dz dx

 8. y1

0
y1

0
y22x22y2

0
 xye z dz dy dx

9–18 Evaluate the triple integral.

 9.  yyyE y dV, where

  E − h sx, y, zd | 0 < x < 3, 0 < y < x, x 2 y < z < x 1 y j
 10. yyyE e zyy dV, where

  E − 5sx, y, zd | 0 < y < 1, y < x < 1, 0 < z < xy6
 11.  yyyE 

z
x 2 1 z 2  dV, where

  E − h sx, y, zd | 1 < y < 4, y < z < 4, 0 < x < z j
 12.  yyyE sin y dV, where E lies below the plane z − x and above 

the triangular region with vertices s0, 0, 0d, s", 0, 0d, and 
s0, ", 0d

 13.  yyyE 6xy dV, where E lies under the plane z − 1 1 x 1 y  
and above the region in the xy-plane bounded by the curves 
y − sx , y − 0, and x − 1

 14.  yyyE sx 2 yd dV, where E is enclosed by the surfaces 
z − x 2 2 1, z − 1 2 x 2, y − 0, and y − 2

 15.  yyyT y
2 dV, where T is the solid tetrahedron with vertices 

s0, 0, 0d, s2, 0, 0d, s0, 2, 0d, and s0, 0, 2d
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29–32 Express the integral yyyE f sx, y, zd dV as an iterated 
integral in six different ways, where E is the solid bounded by 
the given surfaces.

 29. y − 4 2 x 2 2 4z2,  y − 0

 30. y 2 1 z2 − 9,  x − 22,  x − 2

 31. y − x 2,  z − 0,  y 1 2z − 4

 32. x − 2,  y − 2,  z − 0,  x 1 y 2 2z − 2

 33. The figure shows the region of integration for the integral

y1

0
 y1

sx 
 y12y

0
 f sx, y, zd dz dy dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

0 

z 

1 

x 

1 y 

z=1-y 
y=œ„x

 34. The figure shows the region of integration for the integral

y1

0
 y12x2

0
 y12x

0
 f sx, y, zd dy dz dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

1 
1 

1 
z=1-≈ 

y=1-x 

0 
y 

x 

z 

35–36 Write five other iterated integrals that are equal to the 
given iterated integral.

 35. y1

0
 y1

y
 yy

0
 f sx, y, zd dz dx dy

 36. y1

0
 y1

y
 yz

0
 f sx, y, zd dx dz dy

 16.  yyyT xz dV, where T is the solid tetrahedron with vertices 
s0, 0, 0d, s1, 0, 1d, s0, 1, 1d, and s0, 0, 1d

 17.  yyyE x dV, where E is bounded by the paraboloid  
x − 4y2 1 4z2 and the plane x − 4

 18.  yyyE z dV, where E is bounded by the cylinder y 2 1 z2 − 9  
and the planes x − 0, y − 3x, and z − 0 in the first octant

19–22 Use a triple integral to find the volume of the given solid.

 19.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 20.  The solid enclosed by the paraboloids y − x 2 1 z 2 and 
y − 8 2 x 2 2 z 2

 21.  The solid enclosed by the cylinder y − x 2 and the planes 
z − 0 and y 1 z − 1

 22.  The solid enclosed by the cylinder x 2 1 z 2 − 4 and the 
planes y − 21 and y 1 z − 4

 23. (a)  Express the volume of the wedge in the first octant 
that is cut from the cylinder y 2 1 z2 − 1 by the planes 
y − x and x − 1 as a triple integral.

 (b)  Use either the Table of Integrals (on Reference Pages  
6–10) or a computer algebra system to find the exact 
value of the triple integral in part (a).

 24. (a)  In the Midpoint Rule for triple integrals we use a 
triple Riemann sum to approximate a triple integral 
over a box B, where f sx, y, zd is evaluated at the center 
sxi, yj, zk d of the box Bijk. Use the Midpoint Rule to 

    estimate yyyB sx 2 1 y 2 1 z 2   dV, where B is the cube 
defined by 0 < x < 4, 0 < y < 4, 0 < z < 4. Divide 
B into eight cubes of equal size.

 (b)  Use a computer algebra system to approximate the  
integral in part (a) correct to the nearest integer. Com-
pare with the answer to part (a).

25–26 Use the Midpoint Rule for triple integrals (Exer cise 24) 
to estimate the value of the integral. Divide B into eight sub-
boxes of equal size.

 25.  yyyB cossxyzd dV, where 
  B − hsx, y, zd | 0 < x < 1, 0 < y < 1, 0 < z < 1j

 26.  yyyB sx e xyz dV, where 

  B − hsx, y, zd | 0 < x < 4, 0 < y < 1, 0 < z < 2j

27–28 Sketch the solid whose volume is given by the iterated  
integral.

 27. y1

0
 y12x

0
 y222z

0
 dy dz dx 28. y2

0
 y22y

0
 y42y2

0
 dx dz dy

CAS

CAS
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 49.  Let E be the solid in the first octant bounded by the cylinder 
x 2 1 y 2 − 1 and the planes y − z, x − 0, and z − 0 with 
the density function ! sx, y, zd − 1 1 x 1 y 1 z. Use a 
computer algebra system to find the exact values of the fol-
lowing quantities for E.

 (a) The mass
 (b) The center of mass
 (c) The moment of inertia about the z-axis

 50.  If E is the solid of Exercise 18 with density function 
! sx, y, zd − x 2 1 y 2, find the following quantities, correct  
to three decimal places.

 (a) The mass
 (b) The center of mass
 (c) The moment of inertia about the z-axis

 51.  The joint density function for random variables X, Y, and Z 
is f sx, y, zd − Cxyz if 0 < x < 2, 0 < y < 2, 0 < z < 2, 
and f sx, y, zd − 0 otherwise.

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1, Z < 1d.
 (c) Find PsX 1 Y 1 Z < 1d.

 52.  Suppose X, Y, and Z are random variables with joint density 
function f sx, y, zd − Ce2s0.5x10.2y10.1zd if x > 0, y > 0, z > 0, 
and f sx, y, zd − 0 otherwise.

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1d.
 (c) Find PsX < 1, Y < 1, Z < 1d.

53–54 The average value of a function f sx, y, zd over a solid 
region E is defined to be 

fave −
1

VsE d
 y y

E

y f sx, y, zd dV

 where VsE d is the volume of E. For instance, if ! is a density  
function, then !ave is the average density of E.

 53.  Find the average value of the function f sx, y, zd − xyz over  
the cube with side length L that lies in the first octant with 
one vertex at the origin and edges parallel to the coordinate 
axes.

 54.  Find the average height of the points in the solid hemisphere 
x 2 1 y 2 1 z 2 < 1, z > 0.

 55. (a) Find the region E for which the triple integral 

y y
E

y s1 2 x 2 2 2y 2 2 3z 2d dV

   is a maximum.
 (b)  Use a computer algebra system to calculate the exact  

maximum value of the triple integral in part (a).

CAS

CAS

CAS

37–38 Evaluate the triple integral using only geometric 
interpretation and symmetry.

 37.  yyyC s4 1 5x 2yz 2d dV, where C is the cylindrical region

  x 2 1 y 2 < 4, 22 < z < 2

 38.  yyyB sz 3 1 sin y 1 3d dV, where B is the unit ball

  x 2 1 y 2 1 z 2 < 1

39–42 Find the mass and center of mass of the solid E with the 
given density function !.

 39.  E lies above the xy-plane and below the paraboloid 
z − 1 2 x 2 2 y 2;  ! sx, y, zd − 3

 40.  E is bounded by the parabolic cylinder z − 1 2 y 2 and the 
planes x 1 z − 1, x − 0, and z − 0;  ! sx, y, zd − 4

 41.  E is the cube given by 0 < x < a, 0 < y < a, 0 < z < a;  
! sx, y, zd − x 2 1 y 2 1 z2

 42.  E is the tetrahedron bounded by the planes x − 0, y − 0,  
z − 0, x 1 y 1 z − 1;  ! sx, y, zd − y

43–46 Assume that the solid has constant density k.

 43.  Find the moments of inertia for a cube with side length L if  
one vertex is located at the origin and three edges lie along 
the coordinate axes.

 44.  Find the moments of inertia for a rectangular brick with 
dimensions a, b, and c and mass M if the center of the brick 
is situated at the origin and the edges are parallel to the 
coordinate axes.

 45.  Find the moment of inertia about the z-axis of the solid  
cylinder x 2 1 y 2 < a 2, 0 < z < h.

 46.  Find the moment of inertia about the z-axis of the solid cone 
sx 2 1 y 2 < z < h.

47–48 Set up, but do not evaluate, integral expressions for  
(a) the mass, (b) the center of mass, and (c) the moment of  
inertia about the z-axis.

 47. The solid of Exercise 21;  ! sx, y, zd − sx 2 1 y 2 

 48.  The hemisphere x 2 1 y 2 1 z2 < 1, z > 0; 
  ! sx, y, zd − sx 2 1 y 2 1 z 2 
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EXAMPLE 4 Evaluate y2

22
 ys42x2 

2s42x2  
y2

sx21y2 

 sx 2 1 y 2d dz dy dx.

SOLUTION This iterated integral is a triple integral over the solid region 

E − hsx, y, zd | 22 < x < 2, 2s4 2 x 2 < y < s4 2 x 2 , sx 2 1 y 2 < z < 2j
and the projection of E onto the xy-plane is the disk x 2 1 y 2 < 4. The lower sur face of 
E is the cone z − sx 2 1 y 2  and its upper surface is the plane z − 2. (See Fig ure 9.) 
This region has a much simpler description in cylindrical coordinates:

E − hsr, #, zd | 0 < # < 2", 0 < r < 2, r < z < 2 j
Therefore we have

  y2

22
 ys42x2

 

2s42x2  
y2

sx21y2 

 sx 2 1 y 2d dz dy dx − y y
E

y sx 2 1 y 2d dV

 − y2"

0
 y2

0
 y2

r
 r 2 r dz dr d#

 − y2"

0
 d# y2

0
 r 3s2 2 rd dr

 − 2" f1
2 r 4 2 1

5 r 5 g0

2
− 16

5 " Q

z=œ„„„„„ ≈+¥ 

z=2 

2 

z 

x 2 y 2 

FIGURE 9

1–2 Plot the point whose cylindrical coordinates are given. 
Then find the rectangular coordinates of the point.

 1. (a) s4, "y3, 22d (b) s2, 2"y2, 1d

 2. (a) ss2 , 3"y4, 2d (b) s1, 1, 1d

3–4 Change from rectangular to cylindrical coordinates.

 3. (a) s21, 1, 1d (b) s22, 2s3 , 3d
 4. (a) (2s2 , s2 , 1) (b) s2, 2, 2d

5–6 Describe in words the surface whose equation is given.

 5. r − 2 6. # − "y6

7–8 Identify the surface whose equation is given.

 7. r 2 1 z 2 − 4 8. r − 2 sin #

9–10 Write the equations in cylindrical coordinates.

 9. (a) x 2 2 x 1 y 2 1 z 2 − 1 (b) z − x 2 2 y 2

 10. (a) 2x 2 1 2y 2 2 z 2 − 4 (b) 2x 2 y 1 z − 1

11–12 Sketch the solid described by the given inequalities.

 11. r 2 < z < 8 2 r 2

 12. 0 < # < "y2,  r < z < 2

 13.  A cylindrical shell is 20 cm long, with inner radius 6 cm 
and outer radius 7 cm. Write inequalities that describe the 
shell in an appropriate coordinate system. Explain how you 
have positioned the coordinate system with respect to the 
shell.

 14.  Use a graphing device to draw the solid enclosed by the  
paraboloids z − x 2 1 y 2 and z − 5 2 x 2 2 y 2.

15–16 Sketch the solid whose volume is given by the integral  
and evaluate the integral.

 15. y"y2

2"y2
 y2

0
 yr2

0
 r dz dr d# 16. y2

0
 y2"

0
 yr

0
 r dz d# dr

17–28 Use cylindrical coordinates.

 17.  Evaluate yyyE sx 2 1 y 2  dV, where E is the region that lies 
inside the cylinder x 2 1 y 2 − 16 and between the planes 
z − 25 and z − 4.

 18.  Evaluate yyyE z dV, where E is enclosed by the paraboloid
  z − x 2 1 y 2 and the plane z − 4.

;
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1044 CHAPTER 15  Multiple Integrals

29–30 Evaluate the integral by changing to cylindrical 
coordinates.

 29. y2

22
 ys42y2

 

2s42y2  y
2

sx21y2 

   xz dz dx dy

 30. y3

23
 ys92x2  

0
 y92x22y2

0
 sx2 1 y2  dz dy dx

 31.  When studying the formation of mountain ranges, geolo-
gists estimate the amount of work required to lift a moun-
tain from sea level. Consider a mountain that is essentially 
in the shape of a right circular cone. Suppose that the 
weight density of the material in the vicinity of a point P is 
tsPd and the height is hsPd.

 (a)  Find a definite integral that represents the total work 
done in forming the mountain.

 (b)  Assume that Mount Fuji in Japan is in the shape of a 
right circular cone with radius 62,000 ft, height 
12,400 ft, and density a constant 200 lbyft3. How much 
work was done in forming Mount Fuji if the land was 
initially at sea level?

©
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 19.  Evaluate yyyE sx 1 y 1 zd dV, where E is the solid in the 
first octant that lies under the paraboloid z − 4 2 x 2 2 y 2.

 20.  Evaluate yyyE sx 2 yd dV, where E is the solid that lies 
between the cylinders x 2 1 y 2 − 1 and x 2 1 y 2 − 16, 
above the xy-plane, and below the plane z − y 1 4.

 21.  Evaluate yyyE x 2 dV, where E is the solid that lies within the 
   cylinder x 2 1 y 2 − 1, above the plane z − 0, and below the 

cone z2 − 4x 2 1 4y 2.

 22.  Find the volume of the solid that lies within both the cylin-
der x 2 1 y 2 − 1 and the sphere x 2 1 y 2 1 z2 − 4.

 23.  Find the volume of the solid that is enclosed by the cone 
z − sx 2 1 y 2  and the sphere x 2 1 y 2 1 z 2 − 2.

 24.  Find the volume of the solid that lies between the parabo-
loid z − x 2 1 y 2 and the sphere x 2 1 y 2 1 z 2 − 2.

 25. (a)  Find the volume of the region E that lies between 
the paraboloid z − 24 2 x 2 2 y 2 and the cone 
z − 2sx 2 1 y 2 .

 (b)  Find the centroid of E (the center of mass in the case 
where the density is constant).

 26. (a)  Find the volume of the solid that the cylinder 
r − a cos ! cuts out of the sphere of radius a centered 
at the origin.

 (b)  Illustrate the solid of part (a) by graphing the sphere 
and the cylinder on the same screen.

 27.  Find the mass and center of mass of the solid S bounded by 
the paraboloid z − 4x 2 1 4y 2 and the plane z − a sa . 0d 
if S has constant density K.

 28.  Find the mass of a ball B given by x 2 1 y 2 1 z2 < a 2 if the 
density at any point is proportional to its distance from the  
z-axis.

;

The figure shows the solid enclosed by three circular cylinders with the same diameter that inter-
sect at right angles. In this project we compute its volume and determine how its shape changes if 
the cylinders have different diameters.

DISCOVERY PROJECT THE INTERSECTION OF THREE CYLINDERS
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SOLUTION Notice that the sphere passes through the origin and has center s0, 0, 12 d. We 
write the equation of the sphere in spherical coordinates as

"2 − " cos #    or    " − cos #

The equation of the cone can be written as

" cos # − s"2 sin2 # cos 2 ! 1 "2 sin2 # sin2 ! − " sin #

This gives sin # − cos #, or # − $y4. Therefore the description of the solid E in  
spherical coordinates is

E − hs", !, #d | 0 < ! < 2$, 0 < # < $y4, 0 < " < cos # j

Figure 11 shows how E is swept out if we integrate first with respect to ", then #, and 
then !. The volume of E is

 VsEd − y y
E

y dV − y2$

0
 y$y4

0
 ycos

 
#

0
 "2 sin # d" d# d!

 − y2$

0
 d!  y$y4

0
 sin #F "3

3 G"−0

"−cos #

 d#

  −
2$

3
 y$y4

0
 sin # cos3# d# −

2$

3
 F2

cos4#

4 G
0

$y4

−
$

8
 

¨ varies from 0 to 2π.

z

yx

z

yx
∏ varies from 0 to cos ˙
while ˙ and ̈   are constant.

z

yx
˙ varies from 0 to π/4
 while ¨ is constant.

 
Q

Figure 10 gives another look (this 
time drawn by Maple) at the solid of 
Example 4.

TEC Visual 15.8 shows an animation 
of Figure 11.

1–2 Plot the point whose spherical coordinates are given. Then  
find the rectangular coordinates of the point.

 1. (a) s6, $y3, $y6d (b) s3, $y2, 3$y4d

 2. (a) s2, $y2, $y2d (b) s4, 2$y4, $y3d

3–4 Change from rectangular to spherical coordinates.

 3. (a) s0, 22, 0d (b) s21, 1, 2s2 d

 4. (a) s1, 0, s3 d (b) ss3 , 21, 2s3 d

FIGURE 10

FIGURE 11
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1050 CHAPTER 15  Multiple Integrals

 22.  Evaluate yyyE y2z 2 dV, where E lies above the cone # − $y3 
and below the sphere " − 1.

 23.  Evaluate yyyE sx 2 1 y2d dV, where E lies between the spheres
  x 2 1 y 2 1 z 2 − 4 and x 2 1 y 2 1 z 2 − 9.

 24.  Evaluate yyyE y 2 dV, where E is the solid hemisphere
  x 2 1 y 2 1 z2 < 9, y > 0.

 25.  Evaluate yyyE xe x21y21z2 

dV, where E is the portion of the unit
  ball x 2 1 y 2 1 z 2 < 1 that lies in the first octant.

 26.  Evaluate yyyE sx 2 1 y 2 1 z 2  dV, where E lies above the cone 
   z − sx 2 1 y 2  and between the spheres x 2 1 y 2 1 z 2 − 1 and 

x 2 1 y 2 1 z 2 − 4.

 27.  Find the volume of the part of the ball " < a that lies between 
the cones # − $y6 and # − $y3.

 28.  Find the average distance from a point in a ball of radius a to 
its center.

 29. (a)  Find the volume of the solid that lies above the cone 
# − $y3 and below the sphere " − 4 cos #.

 (b) Find the centroid of the solid in part (a).

 30.  Find the volume of the solid that lies within the sphere 
x 2 1 y 2 1 z 2 − 4, above the xy-plane, and below the cone 
z − sx 2 1 y 2 .

 31. (a)  Find the centroid of the solid in Example 4. (Assume con-
stant density K.)

 (b)  Find the moment of inertia about the z-axis for this solid.

 32.  Let H be a solid hemisphere of radius a whose density at any 
point is proportional to its distance from the center of the base.

 (a) Find the mass of H.
 (b) Find the center of mass of H.
 (c) Find the moment of inertia of H about its axis.

 33. (a)  Find the centroid of a solid homogeneous hemisphere of 
radius a.

 (b)  Find the moment of inertia of the solid in part (a) about a 
diameter of its base.

 34.  Find the mass and center of mass of a solid hemisphere of 
radius a if the density at any point is proportional to its  
distance from the base.

35–40 Use cylindrical or spherical coordinates, whichever seems 
more appropriate.

 35.  Find the volume and centroid of the solid E that lies above the 
cone z − sx 2 1 y 2  and below the sphere x 2 1 y 2 1 z2 − 1.

 36.  Find the volume of the smaller wedge cut from a sphere of 
radius a by two planes that intersect along a diameter at an 
angle of $y6.

 37.  A solid cylinder with constant density has base radius a and 
height h.

 (a) Find the moment of inertia of the cylinder about its axis.
 (b)  Find the moment of inertia of the cylinder about a diameter 

of its base.

5–6 Describe in words the surface whose equation is given.

 5. # − $y3 6. " 2 2 3" 1 2 − 0

7–8 Identify the surface whose equation is given.

 7. " cos # − 1 8. " − cos #

9–10 Write the equation in spherical coordinates.

 9. (a) x 2 1 y 2 1 z 2 − 9 (b) x 2 2 y 2 2 z 2 − 1

 10. (a) z − x 2 1 y 2 (b) z − x 2 2 y 2

11–14 Sketch the solid described by the given inequalities.

 11. " < 1, 0 < # < $y6, 0 < ! < $

 12. 1 < " < 2, $y2 < # < $

 13. 2 < " < 4,  0 < # < $y3,  0 < ! < $

 14. " < 2,  " < csc #

 15.  A solid lies above the cone z − sx 2 1 y 2  and below the 
sphere x 2 1 y 2 1 z2 − z. Write a description of the solid in 
terms of inequalities involving spherical coordinates.

 16. (a)  Find inequalities that describe a hollow ball with diameter 
30 cm and thickness 0.5 cm. Explain how you have posi-
tioned the coordinate system that you have chosen.

 (b)  Suppose the ball is cut in half. Write inequalities that 
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral  
and evaluate the integral.

 17. y$y6

0
 y$y2

0
 y3

0
 "2 sin # d" d! d#

 18. y$y4

0
y2$

0
ysec #

0
 " 2 sin # d" d! d#

19–20 Set up the triple integral of an arbitrary continuous function 
f sx, y, zd in cylindrical or spherical coordinates over the solid 
shown.

 19.   20. z 

x y 

3 

2 

z 

x y 2 
1 

21–34 Use spherical coordinates.

 21.  Evaluate yyyB sx2 1 y2 1 z2 d2 dV, where B is the ball with  
center the origin and radius 5.
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distance from Los Angeles (lat. 34.06° N, long. 118.258 W) 
to Montréal (lat. 45.50° N, long. 73.60° W). Take the radius 
of the earth to be 3960 mi. (A great circle is the circle of 
intersection of a sphere and a plane through the center of 
the sphere.)

 47.   The surfaces " − 1 1 1
5 sin m! sin n# have been used as 

models for tumors. The “bumpy sphere” with m − 6 and 
n − 5 is shown. Use a computer algebra system to find the 
volume it encloses.

 48. Show that

y`

2` 
y`

2` 
y`

2`
 sx 2 1 y 2 1 z2 

 
e2sx21y21z2d dx dy dz − 2$

   (The improper triple integral is defined as the limit of a  
triple integral over a solid sphere as the radius of the sphere 
increases indefinitely.)

 49. (a)  Use cylindrical coordinates to show that the volume of  
the solid bounded above by the sphere r 2 1 z2 − a 2 and 
below by the cone z − r cot # 0 (or # − # 0), where 
0 , # 0 , $y2, is

V −
2$a 3

3
 s1 2 cos# 0 d

 (b)  Deduce that the volume of the spherical wedge given by 
"1 < " < " 2, !1 < ! < ! 2, #1 < # < # 2 is

DV −
" 2

3 2 "1
3

3
 scos #1 2 cos # 2 ds! 2 2 !1 d

 (c)  Use the Mean Value Theorem to show that the volume 
in part (b) can be written as

DV − "~ 2 sin #
~

D" D! D#

   where "~  lies between "1 and " 2, #
~

 lies between #1 and  
# 2, D" − " 2 2 "1, D! − !2 2 !1, and D# − # 2 2 #1.

CAS

 38.  A solid right circular cone with constant density has base 
radius a and height h.

 (a)  Find the moment of inertia of the cone about its axis.
 (b)  Find the moment of inertia of the cone about a diameter 

of its base.

 39.  Evaluate yyyE z dV, where E lies above the paraboloid 
   z − x 2 1 y 2 and below the plane z − 2y. Use either the 

Table of Integrals (on Reference Pages 6–10) or a computer 
algebra system to evaluate the integral.

 40. (a) Find the volume enclosed by the torus " − sin #.
 (b) Use a computer to draw the torus.

41–43 Evaluate the integral by changing to spherical 
coordinates.

 41. y1

0
 ys12x2 

0
 ys22x22y2 

sx21y2 
  xy dz dy dx

 42. ya

2a
 ysa22y2 

2sa22y2  y
sa22x22y2 

2sa22x22y2   
sx 2z 1 y 2z 1 z3d dz dx dy

 43. y2

22
 ys42x2 

2s42x2
 y21s42x22y2 

22s42x22y2 
 sx 2 1 y 2 1 z 2d3y2 dz dy dx

 44.  A model for the density % of the earth’s atmosphere near its 
surface is

% − 619.09 2 0.000097"

   where " (the distance from the center of the earth) is mea- 
sured in meters and % is measured in kilograms per cubic 
meter. If we take the surface of the earth to be a sphere with 
radius 6370 km, then this model is a reasonable one for 
6.370 3 106 < " < 6.375 3 106. Use this model to esti-
mate the mass of the atmosphere between the ground and an 
altitude of 5 km.

 45.  Use a graphing device to draw a silo consisting of a cylinder 
with radius 3 and height 10 surmounted by a hemisphere.

 46.  The latitude and longitude of a point P in the Northern 
Hemisphere are related to spherical coordinates ", !, # as 
follows. We take the origin to be the center of the earth 
and the positive z-axis to pass through the North Pole. The 
positive x-axis passes through the point where the prime 
meridian (the meridian through Greenwich, England) inter-
sects the equator. Then the latitude of P is & − 90° 2 #° 
and the longitude is ' − 3608 2 ! 8. Find the great-circle 

CAS

CAS

;
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 19.  yyR  xy dA, where R is the region in the first quadrant 
bounded by the lines y − x and y − 3x and the hyperbolas 
xy − 1, xy − 3;  x − uyv, y − v

 20.  yyR y
2 dA, where R is the region bounded by the curves  

xy − 1, xy − 2, xy 2 − 1, xy 2 − 2;  u − xy, v − xy 2.  
Illustrate by using a graphing calculator or computer to  
draw R.

 21. (a)  Evaluate yyy
E
 dV, where E is the solid enclosed by the 

ellipsoid x 2ya 2 1 y 2yb 2 1 z2yc 2 − 1. Use the transfor-
mation x − au, y − bv, z − cw.

 (b)  The earth is not a perfect sphere; rotation has resulted 
in flattening at the poles. So the shape can be approxi-
mated by an ellipsoid with a − b − 6378 km and 
c − 6356 km. Use part (a) to estimate the volume of the 
earth.

 (c)   If the solid of part (a) has constant density k, find its 
moment of inertia about the z-axis.

 22.  An important problem in thermodynamics is to find the 
work done by an ideal Carnot engine. A cycle consists of 
alternating expansion and compression of gas in a piston. 
The work done by the engine is equal to the area of the 
region R enclosed by two isothermal curves xy − a, xy − b 
and two adiabatic curves xy 1.4 − c, xy 1.4 − d, where 
0 , a , b and 0 , c , d. Compute the work done by 
determining the area of R.

23–27 Evaluate the integral by making an appropriate change of 
variables.

 23.  y
R

y 
x 2 2y
3x 2 y

 dA, where R is the parallelogram enclosed by

   the lines x 2 2y − 0, x 2 2y − 4, 3x 2 y − 1, and 
3x 2 y − 8

 24.  yyR sx 1 yde x22y2
 dA, where R is the rectangle enclosed by 

the lines x 2 y − 0, x 2 y − 2, x 1 y − 0, and x 1 y − 3

 25.  y
R

y cosS y 2 x
y 1 xD dA, where R is the trapezoidal region 

  with vertices s1, 0d, s2, 0d, s0, 2d, and s0, 1d

 26.  yyR sins9x 2 1 4y 2 d dA, where R is the region in the first  
quadrant bounded by the ellipse 9x 2 1 4y 2 − 1

 27.  yyR e x1y dA, where R is given by the inequality 
| x | 1 | y | < 1

 28.  Let f  be continuous on f0, 1g and let R be the triangular 
region with vertices s0, 0d, s1, 0d, and s0, 1d. Show that

y
R

y f sx 1 yd dA − y1

0
 uf sud du

;

1–6 Find the Jacobian of the transformation.

 1. x − 2u 1 v, y − 4u 2 v

 2. x − u 2 1 uv, y − uv 2

 3. x − s cos t, y − s sin t

 4. x − pe q, y − qe p

 5. x − uv, y − vw, z − wu

 6. x − u 1 vw, y − v 1 wu, z − w 1 uv

7–10 Find the image of the set S under the given transformation.

 7.  S − hsu, vd | 0 < u < 3, 0 < v < 2j; 
x − 2u 1 3v, y − u 2 v

 8.  S is the square bounded by the lines u − 0, u − 1, v − 0, 
v − 1;  x − v, y − us1 1 v 2 d

 9.  S is the triangular region with vertices s0, 0d, s1, 1d, s0, 1d;  
x − u2, y − v

 10. S is the disk given by u 2 1 v2 < 1;  x − au, y − bv

11–14 A region R in the xy-plane is given. Find equations for a 
transformation T that maps a rectangular region S in the uv-plane 
onto R, where the sides of S are parallel to the u- and v-axes.

 11.  R is bounded by y − 2x 2 1, y − 2x 1 1, y − 1 2 x, 
y − 3 2 x

 12.  R is the parallelogram with vertices s0, 0d, s4, 3d, s2, 4d, 
s22, 1d

 13.  R lies between the circles x 2 1 y2 − 1 and x 2 1 y2 − 2 in 
the first quadrant

 14.  R is bounded by the hyperbolas y − 1yx, y − 4yx and the  
lines y − x, y − 4x in the first quadrant

15–20 Use the given transformation to evaluate the integral.

 15.  yyR sx 2 3yd dA, where R is the triangular region with 
vertices s0, 0d, s2, 1d, and s1, 2d;  x − 2u 1 v, y − u 1 2v

 16.  yyR s4x 1 8yd dA, where R is the parallelogram with  
vertices s21, 3d, s1, 23d, s3, 21d, and s1, 5d; 
x − 1

4su 1 vd, y − 1
4sv 2 3ud

 17.  yyR x
2 dA, where R is the region bounded by the ellipse 

  9x 2 1 4y 2 − 36;  x − 2u, y − 3v

 18.  yyR sx 2 2 xy 1 y 2 d dA, where R is the region bounded  
by the ellipse x 2 2 xy 1 y 2 − 2;  
x − s2 u 2 s2y3 v, y − s2 u 1 s2y3 v
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CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

15 REVIEW

 1.  Suppose f  is a continuous function defined on a rectangle 
R − fa, bg 3 fc, d g.

 (a)  Write an expression for a double Riemann sum of f .  
If f sx, yd > 0, what does the sum represent?

 (b)  Write the definition of yyR f sx, yd dA as a limit.
 (c)  What is the geometric interpretation of yyR f sx, yd dA if 

f sx, yd > 0? What if f  takes on both positive and negative 
values?

 (d) How do you evaluate yyR f sx, yd dA?
 (e) What does the Midpoint Rule for double integrals say?
 (f ) Write an expression for the average value of f .

 2. (a)  How do you define yyD f sx, yd dA if D is a bounded region 
that is not a rectangle?

 (b)  What is a type I region? How do you evaluate 
yyD f sx, yd dA if D is a type I region?

 (c)  What is a type II region? How do you evaluate 
yyD f sx, yd dA if D is a type II region?

 (d) What properties do double integrals have?

 3.  How do you change from rectangular coordinates to polar  
coordinates in a double integral? Why would you want to make 
the change?

 4.  If a lamina occupies a plane region D and has density function 
!sx, yd, write expressions for each of the following in terms of 
double integrals.

 (a) The mass
 (b) The moments about the axes
 (c) The center of mass
 (d) The moments of inertia about the axes and the origin

 5.  Let f  be a joint density function of a pair of continuous  
random variables X and Y.

 (a)  Write a double integral for the probability that X lies  
between a and b and Y lies between c and d.

 (b) What properties does f  possess?
 (c) What are the expected values of X and Y?

 6.  Write an expression for the area of a surface with equation 
z − f sx, yd, sx, yd [ D.

 7. (a)  Write the definition of the triple integral of f  over a  
rectangular box B.

 (b) How do you evaluate yyyB  f sx, y, zd dV?
 (c)  How do you define yyyE  f sx, y, zd dV if E is a bounded solid 

region that is not a box?
 (d)  What is a type 1 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?
 (e)  What is a type 2 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?
 (f)  What is a type 3 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?

 8.  Suppose a solid object occupies the region E and has density 
function !sx, y, zd. Write expressions for each of the following.

 (a) The mass
 (b) The moments about the coordinate planes
 (c) The coordinates of the center of mass
 (d) The moments of inertia about the axes

 9. (a)  How do you change from rectangular coordinates to cylin-
drical coordinates in a triple integral?

 (b)  How do you change from rectangular coordinates to  
spherical coordinates in a triple integral?

 (c)  In what situations would you change to cylindrical or 
spherical coordinates?

 10. (a)  If a transformation T is given by x − tsu, vd,  
y − hsu, vd, what is the Jacobian of T?

 (b) How do you change variables in a double integral?
 (c) How do you change variables in a triple integral?

TRUE-FALSE QUIZ

 6. y4

1
 y1

0
 sx 2 1 sy d sinsx 2 y 2 d dx dy < 9

 7. If D is the disk given by x 2 1 y 2 < 4, then

y
D

y s4 2 x 2 2 y 2  dA − 16
3 "

 8.  The integral yyyE kr 3 dz dr d# represents the moment of  
inertia about the z-axis of a solid E with constant density k.

 9. The integral 

y2"

0
 y2

0
 y2

r
 dz dr d#

   represents the volume enclosed by the cone z − sx 2 1 y 2   
and the plane z − 2.

Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. y2

21
 y6

0
 x 2 sinsx 2 yd dx dy − y6

0
 y2

21
 x 2 sinsx 2 yd dy dx

 2. y1

0
 yx

0
 sx 1 y2 dy dx − yx

0
y1

0
 sx 1 y2  dx dy

 3. y2

1
 y4

3
 x 2e y dy dx − y2

1
 x 2 dx y4

3
 e y dy

 4. y1

21
 y1

0
 ex21y2

 sin y dx dy − 0

 5. If f  is continuous on f0, 1g, then

y1

0
y1

0
 f sxd f syd dy dx − Fy1

0
 f sxd dxG2
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EXERCISES

 15.  Write the equation in cylindrical coordinates and in spherical 
coordinates.

 (a) x 2 1 y 2 1 z 2 − 4 (b) x 2 1 y 2 − 4

 16.   Sketch the solid consisting of all points with spherical coor-
dinates s!, #, $d such that 0 < # < "y2, 0 < $ < "y6, and 
0 < ! < 2 cos $.

 17. Describe the region whose area is given by the integral 

y"y2

0
 ysin 2#

0
 r dr d#

 18.  Describe the solid whose volume is given by the integral 

y"y2

0
 y"y2

0
 y2

1
 !2 sin $ d! d$ d#

  and evaluate the integral.

19–20 Calculate the iterated integral by first reversing the order of 
integration.

 19. y1

0
 y1

x
 cossy 2d dy dx 20. y1

0
 y1

sy 
  

yex2

x 3
  dx dy

21–34 Calculate the value of the multiple integral.

 21. yyR ye xy dA, where R − hsx, yd | 0 < x < 2, 0 < y < 3j

 22. yyD xy dA, where D − hsx, yd | 0 < y < 1, y 2 < x < y 1 2j

 23. y
D

y 
y

1 1 x 2  dA, 

  where D is bounded by y − sx , y − 0, x − 1

 24.  y
D

y 
1

1 1 x 2  dA, where D is the triangular region with 

  vertices s0, 0d, s1, 1d, and s0, 1d

 25.  yyD y dA, where D is the region in the first quadrant bounded by 
the parabolas x − y 2 and x − 8 2 y 2

 26.  yyD y dA, where D is the region in the first quadrant that lies 
above the hyperbola xy − 1 and the line y − x and below the 
line y − 2

 27.  yyD sx 2 1 y 2 d3y2 dA, where D is the region in the first 
   quad rant bounded by the lines y − 0 and y − s3 x and the  

circle x 2 1 y 2 − 9

 28.  yyD x dA, where D is the region in the first quadrant that lies 
between the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 2

 29. yyyE xy dV, where
  E − hsx, y, zd | 0 < x < 3, 0 < y < x, 0 < z < x 1 yj

 30.  yyyT xy dV, where T is the solid tetrahedron with vertices
  s0, 0, 0d, s1

3 , 0, 0d, s0, 1, 0d, and s0, 0, 1d

 31.  yyyE y 2z2 dV, where E is bounded by the paraboloid 
x − 1 2 y 2 2 z2 and the plane x − 0

 32.  yyyE z dV, where E is bounded by the planes y − 0, z − 0, 
x 1 y − 2 and the cylinder y 2 1 z2 − 1 in the first octant

 1.  A contour map is shown for a function f  on the square 
R − f0, 3g 3 f0, 3g. Use a Riemann sum with nine terms to 
estimate the value of yyR f sx, yd dA. Take the sample points to 
be the upper right corners of the squares.

y

1
1

1 2 3

2

3

2
3

4
5

8
9

10

6
7

x0

 2.  Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 Calculate the iterated integral.

 3. y2

1
 y2

0
 sy 1 2xe y d dx dy 4. y1

0
 y1

0
 ye xy dx dy

 5. y1

0
 yx

0
 cossx 2 d dy dx 6. y1

0
yex

x
 3xy2 dy dx

 7. y"

0
 y1

0
 ys12y2

0
 y sin x dz dy dx 8. y1

0
 yy

0
 y1

x
 6xyz dz dx dy

9–10 Write yyR f sx, yd dA as an iterated integral, where R is the 
region shown and f  is an arbitrary continuous function on R.

 9.   10.

0 42_2_4

y

x

R
2

4

0

4
y

x

R

4_4

 11.  The cylindrical coordinates of a point are (2s3 , "y3, 2). Find 
the rectangular and spherical coordinates of the point.

 12.   The rectangular coordinates of a point are s2, 2, 21d. Find the 
cylindrical and spherical coordinates of the point.

 13.  The spherical coordinates of a point are s8, "y4, "y6d. Find  
the rectangular and cylindrical coordinates of the point.

 14.  Identify the surfaces whose equations are given.
 (a) # − "y4 (b) $ − "y4
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 48. Use spherical coordinates to evaluate

y2

22
 ys42y2 

0
 ys42x22y2 

2s42x22y2
 y 2sx 2 1 y 2 1 z 2  dz dx dy

 49.  If D is the region bounded by the curves y − 1 2 x 2 and 
y − e x, find the approximate value of the integral yyD y 2 dA. 
(Use a graphing device to estimate the points of intersection  
of the curves.)

 50.  Find the center of mass of the solid tetrahedron with verti-
ces s0, 0, 0d, s1, 0, 0d, s0, 2, 0d, s0, 0, 3d and density function 
!sx, y, zd − x 2 1 y 2 1 z2.

 51. The joint density function for random variables X and Y is

f sx, yd − HCsx 1 yd
0

if 0 < x < 3, 0 < y < 2
otherwise

 (a) Find the value of the constant C.
 (b) Find PsX < 2, Y > 1d.
 (c) Find PsX 1 Y < 1d.

 52.  A lamp has three bulbs, each of a type with average lifetime 
800 hours. If we model the probability of failure of a bulb 
by an exponential density function with mean 800, find  
the probability that all three bulbs fail within a total of  
1000 hours.

 53. Rewrite the integral

y1

21
 y1

x2 y12y

0
 f sx, y, zd dz dy dx

  as an iterated integral in the order dx dy dz.

 54. Give five other iterated integrals that are equal to

y2

0
 yy3

0
 yy2

0
 f sx, y, zd dz dx dy

 55.  Use the transformation u − x 2 y, v − x 1 y to evaluate

yy
R

x 2 y
x 1 y

 dA

   where R is the square with vertices s0, 2d, s1, 1d, s2, 2d,  
and s1, 3d.

 56.  Use the transformation x − u 2, y − v2, z − w2 to  
find the volume of the region bounded by the surface 
sx 1 sy 1 sz − 1 and the coordinate planes.

 57.  Use the change of variables formula and an appropriate 
transformation to evaluate yyR xy dA, where R is the square 
with vertices s0, 0d, s1, 1d, s2, 0d, and s1, 21d.

 58.  The Mean Value Theorem for double integrals says that  
if f  is a continuous function on a plane region D that is of 
type I or II, then there exists a point sx0, y0 d in D such that

y
D

y f sx, yd dA − f sx0, y0 d AsDd

   Use the Extreme Value Theorem (14.7.8) and Property 
15.2.11 of integrals to prove this theorem. (Use the proof of 
the single-variable version in Section 6.5 as a guide.)

;

CAS

 33.  yyyE yz dV, where E lies above the plane z − 0, below 
the plane z − y, and inside the cylinder x 2 1 y 2 − 4

 34.  yyyH z3sx 2 1 y 2 1 z 2  dV, where H is the solid hemisphere 
that lies above the xy-plane and has center the origin and  
radius 1

35–40 Find the volume of the given solid.

 35.  Under the paraboloid z − x 2 1 4y 2 and above the rectangle 
R − f0, 2g 3 f1, 4g

 36.  Under the surface z − x 2 y and above the triangle in the  
xy-plane with vertices s1, 0d, s2, 1d, and s4, 0d

 37.  The solid tetrahedron with vertices s0, 0, 0d, s0, 0, 1d, 
s0, 2, 0d, and s2, 2, 0d

 38.  Bounded by the cylinder x 2 1 y 2 − 4 and the planes z − 0  
and y 1 z − 3

 39.  One of the wedges cut from the cylinder x 2 1 9y 2 − a 2 by 
the planes z − 0 and z − mx

 40.  Above the paraboloid z − x 2 1 y 2 and below the half-cone
  z − sx 2 1 y 2 

 41.  Consider a lamina that occupies the region D bounded by  
the parabola x − 1 2 y 2 and the coordinate axes in the first 
quadrant with density function !sx, yd − y.

 (a) Find the mass of the lamina.
 (b) Find the center of mass.
 (c)  Find the moments of inertia and radii of gyration about  

the x- and y-axes.

 42.  A lamina occupies the part of the disk x 2 1 y 2 < a 2 that 
lies in the first quadrant.

 (a) Find the centroid of the lamina.
 (b)  Find the center of mass of the lamina if the density 

function is !sx, yd − xy 2.

 43. (a)  Find the centroid of a solid right circular cone with 
height h and base radius a. (Place the cone so that its 
base is in the xy-plane with center the origin and its axis 
along the positive z-axis.)

 (b)  If the cone has density function !sx, y, zd − sx 2 1 y 2 , 
find the moment of inertia of the cone about its axis (the 
z-axis).

 44.  Find the area of the part of the cone z2 − a 2sx 2 1 y 2 d 
between the planes z − 1 and z − 2.

 45.  Find the area of the part of the surface z − x 2 1 y that lies 
above the triangle with vertices (0, 0), (1, 0), and (0, 2).

 46.  Graph the surface z − x sin y, 23 < x < 3, 2" < y < ", 
and find its surface area correct to four decimal places.

 47. Use polar coordinates to evaluate

y3

0
 ys92x2 

2s92x2  sx 3 1 xy 2d dy dx

CAS
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 (b)  For what values of n does the integral in part (a) have a 
limit as r l 01?

 (c)  Find y  y
E

y 
1

sx 2 1 y 2 1 z2 dny2  dV, where E is the region

    bounded by the spheres with center the origin and radii r 
  and R, 0 , r , R.
 (d)  For what values of n does the integral in part (c) have a 

limit as r l 01?

 59.  Suppose that f  is continuous on a disk that contains the  
point sa, bd. Let Dr be the closed disk with center sa, bd and 
radius r. Use the Mean Value Theorem for double integrals (see 
Exercise 58) to show that

lim
r l 0

 
1

"r 2  y
Dr

y  
f sx, yd dA − f sa, bd

 60. (a)  Evaluate y
D

y 
1

sx 2 1 y 2 dny2  dA, where n is an integer and D 

    is the region bounded by the circles with center the origin 
and radii r and R, 0 , r , R.
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