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  discussed in Example 3 that the production will be doubled  
if both the amount of labor and the amount of capital are  
doubled. Determine whether this is also true for the general 
production function

PsL, K d − bL!K 12!

 5.  A model for the surface area of a human body is given by the 
function

S − f sw, hd − 0.1091w 0.425h 0.725

  where w is the weight (in pounds), h is the height (in inches), 
and S is measured in square feet.

 (a)  Find f s160, 70d and interpret it.
 (b)  What is your own surface area?

 6.  The wind-chill index W discussed in Example 2 has been  
modeled by the following function:

WsT, vd − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

  Check to see how closely this model agrees with the values in 
Table 1 for a few values of T and v.

 7.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in Table 4.

 (a)  What is the value of f s40, 15d? What is its meaning?
 (b)  What is the meaning of the function h − f s30, td?  

Describe the behavior of this function.
 (c)  What is the meaning of the function h − f sv, 30d?  

Describe the behavior of this function.
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 8.  A company makes three sizes of cardboard boxes: small, 
medium, and large. It costs $2.50 to make a small box,  

 1.  In Example 2 we considered the function W − f sT, vd, where  
W is the wind-chill index, T is the actual temperature, and v is  
the wind speed. A numerical representation is given in Table 1 
on page 889.

 (a)  What is the value of f s215, 40d? What is its meaning?
 (b)  Describe in words the meaning of the question “For what 

value of v is f s220, vd − 230?” Then answer the question.
 (c)  Describe in words the meaning of the question “For what 

value of T is f sT, 20d − 249?” Then answer the question.
 (d)  What is the meaning of the function W − f s25, vd?  

Describe the behavior of this function.
 (e)  What is the meaning of the function W − f sT, 50d?  

Describe the behavior of this function.

 2.  The temperature-humidity index I (or humidex, for short) is the 
perceived air temperature when the actual temperature is T and 
the relative humidity is h, so we can write I − f sT, hd. The fol-
lowing table of values of I is an excerpt from a table compiled 
by the National Oceanic & Atmospheric Administration.

Table 3  Apparent temperature as a function  
 of temperature and humidity
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 (a) What is the value of f s95, 70d? What is its meaning?
 (b) For what value of h is f s90, hd − 100?
 (c) For what value of T is f sT, 50d − 88?
 (d)  What are the meanings of the functions I − f s80, hd  

and I − f s100, hd? Compare the behavior of these two 
functions of h.

 3.  A manufacturer has modeled its yearly production function P 
(the monetary value of its entire production in millions of  
dollars) as a Cobb-Douglas function

PsL, Kd − 1.47L 0.65K 0.35

  where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars). Find Ps120, 20d  
and interpret it.

 4. Verify for the Cobb-Douglas production function

PsL, K d − 1.01L 0.75K 0.25
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 33.  A contour map for a function f  is shown. Use it to esti mate the 

values of f s23, 3d and f s3, 22d. What can you say about the 
shape of the graph?
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 34.  Shown is a contour map of atmospheric pressure in North 
America on August 12, 2008. On the level curves (called  
isobars) the pressure is indicated in millibars (mb).

 (a)  Estimate the pressure at C (Chicago), N (Nashville),  
S (San Francisco), and V (Vancouver).

 (b)  At which of these locations were the winds strongest?
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$4.00 for a medium box, and $4.50 for a large box. Fixed costs  
are $8000.

 (a)  Express the cost of making x small boxes, y medium  
boxes, and z large boxes as a function of three variables: 
C − f sx, y, zd.

 (b)  Find f s3000, 5000, 4000d and interpret it.
 (c) What is the domain of f ?

 9. Let tsx, yd − cossx 1 2yd.
 (a) Evaluate ts2, 21d.
 (b) Find the domain of t.
 (c) Find the range of t.

 10. Let Fsx, yd − 1 1 s4 2 y2.
 (a) Evaluate F s3, 1d.
 (b) Find and sketch the domain of F.
 (c) Find the range of F.

 11. Let  f sx, y, zd − sx 1 sy 1 sz 1 lns4 2 x 2 2 y 2 2 z 2d.
 (a) Evaluate f s1, 1, 1d.
 (b) Find and describe the domain of f.

 12. Let tsx, y, zd − x 3y 2zs10 2 x 2 y 2 z .
 (a) Evaluate ts1, 2, 3d.
 (b) Find and describe the domain of t.

 13–22  Find and sketch the domain of the function.

 13. f sx, yd − sx 2 2 1 sy 2 1

 14. f sx, yd − s4 x 2 3y 

 15. f sx, yd − lns9 2 x 2 2 9y2 d 16. f sx, yd − sx 2 1 y2 2 4 

 17. tsx, yd −
x 2 y
x 1 y

 18. tsx, yd −
lns2 2 xd

1 2 x 2 2 y2

 19. f sx, yd −
sy 2 x 2 

1 2 x 2

 20. f sx, yd − sin21sx 1 yd

 21. f sx, y, zd − s4 2 x 2 1 s9 2 y2 1 s1 2 z 2 

 22. f sx, y, zd − lns16 2 4x 2 2 4y2 2 z2 d

23–31  Sketch the graph of the function.

 23. f sx, yd − y 24. f sx, yd − x 2

 25. f sx, yd − 10 2 4x 2 5y 26. f sx, yd − cos y

 27. f sx, yd − sin x 28. f sx, yd − 2 2 x 2 2 y 2

 29. f sx, yd − x 2 1 4y 2 1 1 30. f sx, yd − s4x 2 1 y 2 

 31. f sx, yd − s4 2 4x 2 2 y 2 

 32.  Match the function with its graph (labeled I–VI). Give reasons 
for your choices.

 (a) f sx, yd −
1

1 1 x 2 1 y 2  (b) f sx, yd −
1

1 1 x 2y 2

 (c) f sx, yd − lnsx 2 1 y2d (d) f sx, yd − cos sx 2 1 y2 

 (e) f sx, yd − | xy | (f ) f sx, yd − cossxyd
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 SECTION 14.1  Functions of Several Variables 901

18.5; optimal if the BMI lies between 18.5 and 25; overweight 
if the BMI lies between 25 and 30; and obese if the BMI 
exceeds 30. Shade the region corresponding to optimal BMI. 
Does someone who weighs 62 kg and is 152 cm tall fall into 
this category?

 40.  The body mass index is defined in Exercise 39. Draw the level 
curve of this function corresponding to someone who is 200 cm 
tall and weighs 80 kg. Find the weights and heights of two 
other people with that same level curve.

 41–44 A contour map of a function is shown. Use it to make a 
rough sketch of the graph of f .
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 45–52 Draw a contour map of the function showing several level 
curves.

 45. f sx, yd − x 2 2 y2 46. f sx, yd − xy

 47. f sx, yd − sx 1 y 48. f sx, yd − lnsx 2 1 4y 2d

 49. f sx, yd − ye x 50. f sx, yd − y 2 arctan x

 51. f sx, yd − s3 x 2 1 y2  52. f sx, yd − yysx 2 1 y2d

 53–54 Sketch both a contour map and a graph of the function and 
compare them.

 53. f sx, yd − x 2 1 9y 2 54. f sx, yd − s36 2 9x 2 2 4y 2 

 55.  A thin metal plate, located in the xy-plane, has temperature 
Tsx, yd at the point sx, yd. Sketch some level curves (isother-
mals) if the temperature function is given by

Tsx, yd −
100

1 1 x 2 1 2y 2

 35.  Level curves (isothermals) are shown for the typical water 
temperature sin 8Cd in Long Lake (Minnesota) as a function of 
depth and time of year. Estimate the temperature in the lake on 
June 9 (day 160) at a depth of 10 m and on June 29 (day 180) 
at a depth of 5 m.
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 36.  Two contour maps are shown. One is for a function f  whose 
graph is a cone. The other is for a function t whose graph is a 
paraboloid. Which is which, and why?
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 37.  Locate the points A and B on the map of Lonesome Mountain 
(Figure 12). How would you describe the terrain near A?  
Near B?

 38.  Make a rough sketch of a contour map for the function whose 
graph is shown.
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 39.  The body mass index (BMI) of a person is defined by

Bsm, hd −
m
h2

  where m is the person’s mass (in kilograms) and h is the 
height (in meters). Draw the level curves Bsm, hd − 18.5,
Bsm, hd − 25, Bsm, hd − 30, and Bsm, hd − 40. A rough 
guideline is that a person is underweight if the BMI is less than 
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902 CHAPTER 14  Partial Derivatives

 59. f sx, yd − e2sx 21y 2dy3ssinsx 2d 1 cossy 2dd

 60. f sx, yd − cos x cos y

 61–66 Match the function (a) with its graph (labeled A–F below) 
and (b) with its contour map (labeled I–VI). Give reasons for your 
choices.

 61. z − sinsxyd 62. z − e x cos y

 63. z − sinsx 2 yd 64. z − sin x 2 sin y

 65. z − s1 2 x 2ds1 2 y 2d 66. z −
x 2 y

1 1 x 2 1 y 2

 56.  If Vsx, yd is the electric potential at a point sx, yd in the  
xy-plane, then the level curves of V are called equipotential 
curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if 
Vsx, yd − cysr 2 2 x 2 2 y 2 , where c is a positive constant.

 57–60 Use a computer to graph the function using various 
domains and viewpoints. Get a printout of one that, in your 
opinion, gives a good view. If your software also produces level 
curves, then plot some contour lines of the same function and 
compare with the graph.

 57. f sx, yd − xy 2 2 x 3  (monkey saddle)

 58. f sx, yd − xy 3 2 yx 3  (dog saddle)
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Graphs and Contour Maps for Exercises 35–40
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  78.  Use a computer to investigate the family of surfaces

z − sax 2 1 by 2de2x 22y 2

  How does the shape of the graph depend on the numbers a 
and b?

  79.  Use a computer to investigate the family of surfaces 
z − x 2 1 y 2 1 cxy. In particular, you should determine the 
transitional values of c for which the surface changes from 
one type of quadric surface to another.

  80.  Graph the functions

 f sx, yd − sx 2 1 y 2 

 f sx, yd − esx 21y 2 

 f sx, yd − lnsx 2 1 y 2 

 f sx, yd − sinssx 2 1 y 2 d

 and f sx, yd −
1

sx 2 1 y 2 

  In general, if t is a function of one variable, how is the 
graph of 

 f sx, yd − tssx 2 1 y 2 d

  obtained from the graph of t?

  81. (a)  Show that, by taking logarithms, the general Cobb-
Douglas function P − bL!K 12! can be expressed as

ln 
P
K

− ln b 1 ! ln 
L
K

 (b)  If we let x − lnsLyK d and y − lnsPyK d, the equation  
in part (a) becomes the linear equation y − !x 1 ln b.  
Use Table 2 (in Example 3) to make a table of values 
of lnsLyKd and lnsPyKd for the years 1899–1922. 
Then use a graphing calculator or computer to find 
the least squares regression line through the points 
slnsLyKd, lnsPyKdd.

 (c)  Deduce that the Cobb-Douglas production function is 
P − 1.01L0.75K 0.25.

;

;

;

;

67–70 Describe the level surfaces of the function.

 67. f sx, y, zd − x 1 3y 1 5z

 68. f sx, y, zd − x 2 1 3y 2 1 5z2

 69. f sx, y, zd − y 2 1 z2

 70. f sx, y, zd − x 2 2 y 2 2 z2

 71–72 Describe how the graph of t is obtained from the graph 
of f .

 71.  (a) tsx, yd − f sx, yd 1 2
 (b) tsx, yd − 2 f sx, yd
 (c) tsx, yd − 2f sx, yd
 (d) tsx, yd − 2 2 f sx, yd

 72. (a) tsx, yd − f sx 2 2, yd
 (b) tsx, yd − f sx, y 1 2d
 (c) tsx, yd − f sx 1 3, y 2 4d

 73–74 Use a computer to graph the function using various 
domains and viewpoints. Get a printout that gives a good view 
of the “peaks and valleys.” Would you say the function has a 
maxi mum value? Can you identify any points on the graph that 
you might consider to be “local maximum points”? What about 
“local minimum points”?

 73. f sx, yd − 3x 2 x 4 2 4y 2 2 10xy

 74. f sx, yd − xye2x 22y 2

 75–76 Graph the function using various domains and view-
points. Comment on the limiting behavior of the function. What 
happens as both x and y become large? What happens as sx, yd 
approaches the origin?

 75. f sx, yd −
x 1 y

x 2 1 y 2  76. f sx, yd −
xy

x 2 1 y 2

  77.  Investigate the family of functions f sx, yd − e cx 21y 2
 . How 

does the shape of the graph depend on c?

;

;

;

Let’s compare the behavior of the functions

f sx, yd −
sinsx 2 1 y 2 d

x 2 1 y 2     and    tsx, yd −
x 2 2 y 2

x 2 1 y 2

as x and y both approach 0 [and therefore the point sx, yd approaches the origin].
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910 CHAPTER 14  Partial Derivatives

 7. lim
sx, yd l s!, !y2d

 y sinsx 2 yd 8. lim
sx, yd l s3, 2d

 e s2x2y 

 9. lim
sx, yd l s0, 0d

 
x 4 2 4y 2

x 2 1 2 y 2  10. lim
sx, yd l s0, 0d

 
5y 4 cos2x
x 4 1 y 4

 11. lim
sx, ydls0, 0d

 
y 2 sin2x
x 4 1 y 4  12. lim

sx, yd l s1, 0d
 

x y 2 y
sx 2 1d2 1 y 2

 13. lim
sx, ydl s0, 0d

 
xy

sx 2 1 y 2
 14. lim

sx, yd l s0, 0d
 

x 3 2 y 3

x 2 1 xy 1 y 2

 15. lim
sx, ydl s0, 0d

 
xy 2 cos y
x 2 1 y 4  16. lim

sx, yd l s0, 0d
 

xy 4

x 4 1 y 4

 17. lim
sx, ydl s0, 0d

 
x 2 1 y 2

sx 2 1 y 2 1 1 2 1

 18. lim
sx, yd l s0, 0d

 
xy 4

x 2 1 y 8

 19. lim
sx, y, zd l s!, 0, 1y3d

 e y 2

tansxzd 20. lim
sx, y, zdls0, 0, 0d

 
xy 1 yz

x 2 1 y 2 1 z2

 1.  Suppose that limsx, yd l s3, 1d f sx, yd − 6. What can you say  
about the value of f s3, 1d? What if f  is continuous?

 2.  Explain why each function is continuous or discontinuous.
 (a)  The outdoor temperature as a function of longitude,  

latitude, and time
 (b)  Elevation (height above sea level) as a function of  

longitude, latitude, and time
 (c)  The cost of a taxi ride as a function of distance traveled  

and time

 3–4 Use a table of numerical values of f sx, yd for sx, yd near the 
origin to make a conjecture about the value of the limit of f sx, yd  
as sx, yd l s0, 0d. Then explain why your guess is correct.

 3. f sx, yd −
x 2y 3 1 x 3y 2 2 5

2 2 xy
 4. f sx, yd −

2xy
x 2 1 2y 2

 5–22  Find the limit, if it exists, or show that the limit does  
not exist.

 5. lim
sx, ydls3, 2d

 sx 2 y 3 2 4y 2d 6. lim
sx, yd l s2, 21d

 
x 2y 1 xy 2

x 2 2 y 2

For instance, the function

f sx, y, zd −
1

x 2 1 y 2 1 z2 2 1

is a rational function of three variables and so is continuous at every point in R 3 except 
where x 2 1 y 2 1 z2 − 1. In other words, it is discontinuous on the sphere with center 
the origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write 
the definitions of a limit for functions of two or three variables in a single compact form 
as follows.

5    If f  is defined on a subset D of R n , then lim x l a f sxd − L means that for every  
number « . 0 there is a corresponding number " . 0 such that

if  x [ D  and  0 , | x 2 a | , "  then  | f sxd 2 L | , «

Notice that if n − 1, then x − x and a − a, and (5)  is just the definition of a limit for 
functions of a single variable. For the case n − 2, we have x − kx, y l, a − ka, b l,
and |x 2 a | − ssx 2 ad 2 1 sy 2 bd 2 , so (5) becomes Definition 1. If n − 3, then 
x − kx, y, z l, a − ka, b, c l, and (5) becomes the definition of a limit of a function of 
three variables. In each case the definition of continuity can be written as

 lim 
x l a

 f sxd − f sad
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 SECTION 14.3  Partial Derivatives 911

 38. f sx, yd − H
0

xy
x 2 1 xy 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

 39–41 Use polar coordinates to find the limit. [If sr, #d are 
polar coordinates of the point sx, yd with r > 0, note that 
r l 01 as sx, yd l s0, 0d.]

 39. lim
sx, yd l s0, 0d 

 
x3 1 y3

x2 1 y2

 40. lim
sx, yd l s0, 0d 

 sx2 1 y2 d lnsx2 1 y2 d

 41. lim
sx, yd l s0, 0d 

 
e2x 22y 2

2 1
x 2 1 y 2

 42. At the beginning of this section we considered the function

f sx, yd −
sinsx 2 1 y 2 d

x 2 1 y 2

  and guessed on the basis of numerical evidence that 
f sx, yd l 1 as sx, yd l s0, 0d. Use polar coordinates to 
confirm the value of the limit. Then graph the function.

 43.  Graph and discuss the continuity of the function

f sx, yd − H
1

sin xy
xy

if

if

xy ± 0

xy − 0

 44.  Let

f sx, yd − H0  if y < 0  or  y > x 4

1  if 0 , y , x 4

 (a)  Show that f sx, yd l 0 as sx, yd l s0, 0d along any path 
through s0, 0d of the form y − mx a with 0 , a , 4.

 (b)  Despite part (a), show that f  is discontinuous at s0, 0d.
 (c)  Show that f  is discontinuous on two entire curves.

 45.  Show that the function f  given by f sxd − | x | is continuous 
on R n .  [Hin t: Consider | x 2 a |2 − sx 2 ad ? sx 2 ad.]

 46.  If c [ Vn , show that the function f  given by f sxd − c ? x is 
continuous on R n .

;

;

 21. lim
sx, y, zd l s0, 0, 0d

 
xy 1 yz 2 1 xz 2

x 2 1 y 2 1 z 4

 22. lim
sx, y, zd l s0, 0, 0d

 
x 2 y 2z 2

x 2 1 y 2 1 z2

 23–24 Use a computer graph of the function to explain why the 
limit does not exist.

 23. lim
sx, yd l s0, 0d

 
2x 2 1 3xy 1 4y 2

3x 2 1 5y 2  24. lim
sx, yd l s0, 0d

 
xy 3

x 2 1 y6

 25–26 Find hsx, yd − ts f sx, ydd and the set of points at which h 
is continuous.

 25. tstd − t 2 1 st  ,  f sx, yd − 2x 1 3y 2 6

 26. tstd − t 1 ln t,   f sx, yd −
1 2 xy

1 1 x 2 y 2

 27–28 Graph the function and observe where it is discontinu-
ous. Then use the formula to explain what you have observed.

 27. f sx, yd − e 1ysx2yd 28. f sx, yd −
1

1 2 x 2 2 y 2

 29–38 Determine the set of points at which the function is 
continuous.

 29. Fsx, yd −
xy

1 1 e x2y  30. Fsx, yd − coss1 1 x 2 y 

 31. Fsx, yd −
1 1 x 2 1 y 2

1 2 x 2 2 y 2  32. Hsx, yd −
e x 1 e y

e xy 2 1

 33. Gsx, yd − sx 1 s1 2 x 2 2 y 2 

 34. Gsx, yd − lns1 1 x 2 yd

 35. f sx, y, zd − arcsinsx 2 1 y 2 1 z 2d

 36. f sx, y, zd − sy 2 x 2  ln z

 37. f sx, yd − H
1

x 2 y 3

2x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

;

;

On a hot day, extreme humidity makes us think the temperature is higher than it really  
is, whereas in very dry air we perceive the temperature to be lower than the thermom- 
eter indicates. The National Weather Service has devised the heat in dex (also called the 
temperature-humidity index, or humidex, in some countries) to describe the combined 
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 SECTION 14.3  Partial Derivatives 923

 1.  The temperature T (in 8Cd at a location in the Northern Hemi-
sphere depends on the longitude x, latitude y, and time t, so we 
can write T − f sx, y, td. Let’s measure time in hours from the 
beginning of January.

 (a)  What are the meanings of the partial derivatives −Ty−x,
−Ty−y, and −Ty−t?

 (b)  Honolulu has longitude 158°W and latitude 21°N. Sup-
pose that at 9:00 am on January 1 the wind is blowing hot 
air to the northeast, so the air to the west and south is warm 
and the air to the north and east is cooler. Would you expect 
fxs158, 21, 9d, fys158, 21, 9d, and fts158, 21, 9d to be posi-
tive or negative? Explain.

 2.  At the beginning of this section we discussed the function 
I − f sT, H d, where I is the heat index, T is the temperature,  
and H is the relative humidity. Use Table 1 to estimate 
fT s92, 60d and fH s92, 60d. What are the practical interpretations 
of these values?

 3.  The wind-chill index W is the perceived temperature when the 
actual temperature is T and the wind speed is v, so we can write 
W − f sT, vd. The following table of values is an excerpt from 
Table 1 in Section 14.1.

  

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km /h)

 (a)  Estimate the values of fT s215, 30d and fvs215, 30d. What 
are the practical interpretations of these values?

 (b)  In general, what can you say about the signs of −Wy−T  
and −Wy−v?

 (c) What appears to be the value of the following limit?

lim
v l `

 
−W
−v

 4.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table.

  

2

4

5

9

14

19

24

2

4

7

13

21

29

37

2

5

8

16

25

36

47

2

5

8

17

28

40

54

2

5

9

18

31

45

62

2

5

9

19

33

48

67

2

5

9

19

33

50

69

v
t

10

15

20

30

40

50

60

Duration (hours)

W
in

d 
sp

ee
d 

(k
no

ts
)

5 10 15 20 30 40 50

 (a)  What are the meanings of the partial derivatives −hy−v  
and −hy−t?

 (b)  Estimate the values of fvs40, 15d and fts40, 15d. What are 
the practical interpretations of these values?

 (c) What appears to be the value of the following limit?

lim
t l `

 
−h
−t

where b is a constant that is independent of both L and K. Assumption (i) shows that 
! . 0 and " . 0.

Notice from Equation 9 that if labor and capital are both increased by a factor m, then

PsmL, mKd − bsmLd!smKd" − m!1"bL!K" − m!1"PsL, Kd

If ! 1 " − 1, then PsmL, mKd − mPsL, Kd, which means that production is also 
increased by a factor of m. That is why Cobb and Douglas assumed that ! 1 " − 1 and 
therefore

PsL, Kd − bL!K 12!

This is the Cobb-Douglas production function that we discussed in Section 14.1.
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924 CHAPTER 14  Partial Derivatives

 10.  A contour map is given for a function f. Use it to estimate 
fxs2, 1d and fys2, 1d.

  

7et1403x10
04/29/10
MasterID: 01581

3 x

y

3
_2

0 6 8
10

14
16

12

18
2

4

_4

1

 11.  If f sx, yd − 16 2 4x 2 2 y 2, find fxs1, 2d and fys1, 2d and 
interpret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

 12.  If f sx, yd − s4 2 x 2 2 4y 2 , find fxs1, 0d and fys1, 0d and 
inter pret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

 13–14 Find fx and fy and graph f , fx, and fy with domains and  
viewpoints that enable you to see the relationships between them.

 13. f sx, yd − x 2y3 14. f sx, yd −
y

1 1 x 2y2

 15–40 Find the first partial derivatives of the function.

 15. f sx, yd − x 4 1 5xy 3 16. f sx, yd − x 2y 2 3y 4

 17. f sx, td − t 2e2x  18. f sx, td − s3x 1 4t   

 19. z − lnsx 1 t 2d 20. z − x sinsxyd

 21. f sx, yd −
x
y

 22. f sx, yd −
x

sx 1 yd2

 23. f sx, yd −
ax 1 by
cx 1 dy

 24. w −
ev

u 1 v 2

 25. tsu, vd − su 2v 2 v 3d5 26. usr, #d − sinsr cos #d

 27. Rsp, qd − tan21spq 2d 28. f sx, yd − x y

 29. Fsx, yd − yx

y
 cosse td dt 30. Fs!, "d − y"

!
 st 3 1 1

 
 dt

 31. f sx, y, zd − x 3 yz 2 1 2yz 32. f sx, y, zd − xy 2e2xz

 33. w − lnsx 1 2y 1 3zd 34. w − y tansx 1 2zd

 35. p − st 4 1 u 2 cos v  36. u − x yyz

 37. hsx, y, z, td − x 2y cosszytd 38. $sx, y, z, td −
!x 1 "y 2

%z 1 &t 2

 39. u − sx 2
1 1 x 2

2 1 ∙ ∙ ∙ 1 x 2
n 

 40. u − sinsx1 1 2x2 1 ∙ ∙ ∙ 1 nxn d

 41–44 Find the indicated partial derivative.

 41. Rss, td − te syt;   Rt s0, 1d

;

 5  –8 Determine the signs of the partial derivatives for the  
function f  whose graph is shown.

7et1403x05
04/29/10
MasterID: 01579

1x

y

z

2

 5.  (a) fxs1, 2d (b) fys1, 2d

 6. (a) fxs21, 2d (b) fys21, 2d

 7. (a) fxxs21, 2d (b) fyys21, 2d

 8. (a) fxys1, 2d (b) fxys21, 2d

 9.  The following surfaces, labeled a, b, and c, are graphs of a 
function f  and its partial derivatives fx and fy . Identify each 
surface and give reasons for your choices.
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z 0
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y
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 SECTION 14.3  Partial Derivatives 925

 70. u − x ay bz c;  
−6u

−x −y 2 −z 3

 71.  If f sx, y, zd − xy 2z3 1 arcsinsxsz
 
d, find fxzy.  

[Hint: Which order of differentiation is easiest?]

 72.  If tsx, y, zd − s1 1 xz 1 s1 2 xy , find txyz. [Hint: Use a 
different order of differentiation for each term.]

 73.  Use the table of values of f sx, yd to estimate the values of 
fxs3, 2d, fxs3, 2.2d, and fxys3, 2d.

  

7et1403tx73
04/29/10
MasterID: 01582

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

 74.  Level curves are shown for a function f. Determine whether  
the following partial derivatives are positive or negative at the 
point P.

 (a) fx (b) fy (c) fxx

 (d) fxy (e) fyy

  

7et1403x74
04/29/10
MasterID: 01583

10 8 6 4 2

y

x

P

 75.  Verify that the function u − e2!2k 2 t sin kx is a solution of the 
heat conduction equation ut − !2uxx.

 76.  Determine whether each of the following functions is a  
solution of Laplace’s equation uxx 1 uyy − 0.

 (a) u − x 2 1 y 2 (b) u − x 2 2 y 2

 (c) u − x 3 1 3xy 2 (d) u − ln sx 2 1 y 2 

 (e) u − sin x cosh y 1 cos x sinh y
 (f) u − e2x cos y 2 e2y cos x

 77.  Verify that the function u − 1ysx 2 1 y 2 1 z 2  is a solution of 
the three-dimensional Laplace equation uxx 1 u yy 1 uzz − 0.

 78.  Show that each of the following functions is a solution of the 
wave equation ut t − a2uxx.

 (a) u − sinskxd sinsaktd (b) u − tysa2t 2 2 x 2 d
 (c) u − sx 2 atd6 1 sx 1 atd6

 (d) u − sinsx 2 atd 1 lnsx 1 atd

 79.  If f  and t are twice differentiable functions of a single vari-
able, show that the function

usx, td − f sx 1 atd 1 tsx 2 atd

 is a solution of the wave equation given in Exercise 78.

 42. f sx, yd − y sin21sxyd;   fy (1, 12)

 43. f sx, y, zd − ln 
1 2 sx 2 1 y 2 1 z 2 

1 1 sx 2 1 y 2 1 z 2 
 ;   fy s1, 2, 2d

 44. f sx, y, zd − x yz;  fz se, 1, 0d

 45–46 Use the definition of partial derivatives as limits (4) to find 
fxsx, yd and fysx, yd.

 45. f sx, yd − xy 2 2 x 3y 46. f sx, yd −
x

x 1 y 2

 47–50 Use implicit differentiation to find −zy−x and −zy−y.

 47. x 2 1 2y 2 1 3z2 − 1 48. x 2 2 y 2 1 z 2 2 2z − 4

 49. e z − xyz 50. yz 1 x ln y − z2

51–52 Find −zy−x and −zy−y.

 51. (a) z − f sxd 1 tsyd (b) z − f sx 1 yd

 52.  (a) z − f sxdtsyd (b) z − f sxyd
 (c) z − f sxyyd

53–58 Find all the second partial derivatives.

 53. f sx, yd − x 4y 2 2x 3y 2 54. f sx, yd − lnsax 1 byd

 55. z −
y

2x 1 3y
 56. T − e22r cos #

 57. v − sinss 2 2 t 2d 58. w − s1 1 uv 2 

 59–62 Verify that the conclusion of Clairaut’s Theorem holds, that 
is, ux y − uyx.

 59. u − x 4y 3 2 y 4 60. u − e xy sin y

 61. u − cossx 2yd 62. u − lnsx 1 2yd

63–70 Find the indicated partial derivative(s).

 63. f sx, yd − x 4y 2 2 x 3y;   fxxx,   fxyx

 64. f sx, yd − sins2x 1 5yd;  fyxy

 65. f sx, y, zd − exyz 2
;   fxyz

 66. tsr, s, td − e r sinsstd;  trst

 67. W − su 1 v 2 ;   
− 3W

−u 2 −v

 68. V − lnsr 1 s 2 1 t 3d;  
− 3V

−r −s −t

 69. w −
x

y 1 2z
;  

− 3w
−z −y −x

,  
− 3w

−x 2 −y
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926 CHAPTER 14  Partial Derivatives

 87.  The van der Waals equation for n moles of a gas is

SP 1
n 2a
V 2  DsV 2 nbd − nRT

  where P is the pressure, V is the volume, and T is the tempera-
ture of the gas. The constant R is the universal gas constant  
and a and b are positive constants that are characteristic of a 
particular gas. Calculate −Ty−P and −Py−V.

 88.  The gas law for a fixed mass m of an ideal gas at absolute 
temperature T, pressure P, and volume V is PV − mRT, where 
R is the gas constant. Show that

−P
−V

 
−V
−T

 
−T
−P

− 21

 89. For the ideal gas of Exercise 88, show that

T
−P
−T

 
−V
−T

− mR

 90.  The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16 

  where T is the temperature s°Cd and v is the wind speed 
skmyhd. When T − 215°C and v − 30 kmyh, by how much 
would you expect the apparent temperature W to drop if the  
actual temperature decreases by 1°C? What if the wind speed 
increases by 1 kmyh?

 91.  A model for the surface area of a human body is given by the 
function

S − f sw, hd − 0.1091w0.425h0.725

  where w is the weight (in pounds), h is the height (in inches), 
and S is measured in square feet. Calculate and interpret the 
partial derivatives.

 (a) 
−S
−w

 s160, 70d  (b) 
−S
−h

 s160, 70d

 92.  One of Poiseuille’s laws states that the resistance of blood flow-
ing through an artery is

R − C 
L
r 4

  where L and r are the length and radius of the artery and C is 
a positive constant determined by the viscosity of the blood. 
Calculate −Ry−L and −Ry−r and interpret them.

 93.  In the project on page 344 we expressed the power needed by a 
bird during its flapping mode as

Psv, x, md − Av 3 1
Bsmtyxd2

v

  where A and B are constants specific to a species of bird, v is 
the velocity of the bird, m is the mass of the bird, and x is the 
fraction of the flying time spent in flapping mode. Calculate 
−Py−v, −Py−x, and −Py−m and interpret them.

 80.  If u − e a1x11a2 x21 ∙ ∙ ∙1an xn, where a2
1 1 a2

2 1 ∙ ∙ ∙ 1 a2
n − 1,  

show that

−2u
−x 2

1
1

−2u
−x 2

2
1 ∙ ∙ ∙ 1

−2u
−x 2

n
− u

 81.  The diffusion equation

−c
−t

− D 
−2c
−x 2

  where D is a positive constant, describes the diffusion of heat 
through a solid, or the concentration of a pollutant at time t at 
a distance x from the source of the pollution, or the invasion of 
alien species into a new habitat. Verify that the function

csx, td −
1

s4'Dt 
 e2x 2ys4Dtd

 is a solution of the diffusion equation.

 82.  The temperature at a point sx, yd on a flat metal plate is given 
by Tsx, yd − 60ys1 1 x 2 1 y 2 d, where T is measured in 8C 
and x, y in meters. Find the rate of change of temper ature with 
respect to distance at the point s2, 1d in (a) the x-direction and 
(b) the y-direction.

 83.  The total resistance R produced by three conductors with resis-
tances R1, R2, R3 connected in a parallel electrical circuit is 
given by the formula

1
R

−
1
R1

1
1
R2

1
1
R3

 Find −Ry−R1.

 84.  Show that the Cobb-Douglas production function P − bL!K " 
satisfies the equation

L 
−P
−L

1 K 
−P
−K

− s! 1 "dP

 85.  Show that the Cobb-Douglas production function satisfies 
PsL, K0 d − C1sK0 dL! by solving the differential equation

dP
dL

− ! 
P
L

 (See Equation 6.)

 86.  Cobb and Douglas used the equation PsL, Kd − 1.01L 0.75K 0.25 
to model the American economy from 1899 to 1922, where L  
is the amount of labor and K is the amount of capital. (See 
Example 14.1.3.)

 (a) Calculate PL and PK.
 (b)  Find the marginal productivity of labor and the marginal 

productivity of capital in the year 1920, when L − 194 and 
K − 407 (compared with the assigned values L − 100 and 
K − 100 in 1899). Interpret the results.

 (c)  In the year 1920, which would have benefited production 
more, an increase in capital investment or an increase in 
spending on labor?
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 (b) Find −Ty−t. What is its physical significance?
 (c)  Show that T satisfies the heat equation Tt − kTxx for a 

certain constant k.
 (d)  If ( − 0.2, T0 − 0, and T1 − 10, use a computer to  

graph Tsx, td.
 (e)  What is the physical significance of the term 2(x in 

the expression sins)t 2 (xd?

 101.  Use Clairaut’s Theorem to show that if the third-order 
partial derivatives of f  are continuous, then

fx yy − fyx y − fyyx

 102. (a)  How many nth-order partial derivatives does a func-
tion of two variables have?

 (b)  If these partial derivatives are all continuous, how 
many of them can be distinct?

 (c)  Answer the question in part (a) for a function of three  
variables.

 103.  If

 f sx, yd − xsx 2 1 y 2 d23y2e sinsx 2 yd 

   find fxs1, 0d. [Hint: Instead of finding fxsx, yd first, note 
that it’s easier to use Equation 1 or Equation 2.]

 104. If f sx, yd − s3 x 3 1 y 3 , find fxs0, 0d.

 105. Let

f sx, yd − H
0

x 3y 2 xy 3

x 2 1 y 2
if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

 (a)  Use a computer to graph f.
 (b) Find fxsx, yd and fysx, yd when sx, yd ± s0, 0d.
 (c) Find fxs0, 0d and fys0, 0d using Equations 2 and 3.
 (d) Show that fxys0, 0d − 21 and fyxs0, 0d − 1.
 (e)  Does the result of part (d) contradict Clairaut’s 

Theorem? Use graphs of fxy and fyx to illustrate your 
answer.

;

;

CAS

 94.  The average energy E (in kcal) needed for a lizard to  
walk or run a distance of 1 km has been modeled by  
the equation 

Esm, vd − 2.65m0.66 1
3.5m0.75

v

   where m is the body mass of the lizard (in grams) and v is 
its speed (in kmyh). Calculate Ems400, 8d and Evs400, 8d 
and interpret your answers.

  Source: C. Robbins, Wildlife Feeding and Nutrition, 2d ed. (San Diego: 
Academic Press, 1993).

 95.  The kinetic energy of a body with mass m and velocity v is 
K − 1

2 mv2. Show that

−K
−m

 
−2K
−v2 − K

 96.   If a, b, c are the sides of a triangle and A, B, C are the 
opposite angles, find −Ay−a, −Ay−b, −Ay−c by implicit 
differentiation of the Law of Cosines.

 97.  You are told that there is a function f  whose partial deriva- 
tives are fxsx, yd − x 1 4y and fysx, yd − 3x 2 y. Should 
you believe it?

 98.  The paraboloid z − 6 2 x 2 x 2 2 2y 2 intersects the plane 
x − 1 in a parabola. Find parametric equations for the 
tangent line to this parabola at the point s1, 2, 24d. Use a 
computer to graph the paraboloid, the parabola, and the 
tangent line on the same screen.

 99.  The ellipsoid 4x 2 1 2y 2 1 z2 − 16 intersects the plane 
y − 2 in an ellipse. Find parametric equations for the tan-
gent line to this ellipse at the point s1, 2, 2d.

 100.  In a study of frost penetration it was found that the temper-
ature T at time t (measured in days) at a depth x (measured 
in feet) can be modeled by the function

Tsx, td − T0 1 T1e2(x sins)t 2 (xd

   where ) − 2'y365 and ( is a positive constant.
 (a) Find −Ty−x. What is its physical significance?

;

One of the most important ideas in single-variable calculus is that as we zoom in toward  
a point on the graph of a differentiable function, the graph becomes indistinguishable  
from its tangent line and we can approximate the function by a linear function. (See Sec- 
t ion 3.10.) Here we develop similar ideas in three dimensions. As we zoom in toward a 
point on a surface that is the graph of a differentiable func tion of two variables, the sur-
face looks more and more like a plane (its tangent plane) and we can approximate the 
function by a linear function of two variables. We also extend the idea of a differential to 
functions of two or more variables.
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934 CHAPTER 14  Partial Derivatives

 1–6 Find an equation of the tangent plane to the given surface at 
the specified point.

 1. z − 2x 2 1 y 2 2 5y,  s1, 2, 24d

 2. z − sx 1 2d2 2 2sy 2 1d2 2 5,  s2, 3, 3d

 3. z − e x2y,  s2, 2, 1d

 4. z − xyy 2,  s24, 2, 21d

 5. z − x sinsx 1 yd,  s21, 1, 0d

 6. z − lnsx 2 2yd,  s3, 1, 0d

 7–8 Graph the surface and the tangent plane at the given point. 
(Choose the domain and viewpoint so that you get a good view 
of both the surface and the tangent plane.) Then zoom in until 
the surface and the tangent plane become indistinguishable.

 7. z − x 2 1 xy 1 3y 2,  s1, 1, 5d

 8. z − s9 1 x 2 y 2 ,  s2, 2, 5d

9–10 Draw the graph of f  and its tangent plane at the given 
point. (Use your computer algebra system both to compute the 
partial derivatives and to graph the surface and its tangent plane.) 

;

CAS

Then zoom in until the surface and the tangent plane become  
indistinguishable.

 9. f sx, yd −
1 1 cos2sx 2 yd
1 1 cos2sx 1 yd

,  S!

3
, 

!

6
, 

7
4D

 10. f sx, yd − e2xyy10 ssx 1 sy 1 sxy d,  s1, 1, 3e20.1d

 11–16 Explain why the function is differentiable at the given 
point. Then find the linearization Lsx, yd of the function at  
that point.

 11. f sx, yd − 1 1 x lnsxy 2 5d,  s2, 3d

 12. f sx, yd − sxy ,  s1, 4d

 13. f sx, yd − x 2e y,  s1, 0d

 14. f sx, yd −
1 1 y
1 1 x

,  s1, 3d

 15. f sx, yd − 4 arctansxyd,  s1, 1d

 16. f sx, yd − y 1 sinsxyyd,  s0, 3d

17–18 Verify the linear approximation at s0, 0d.

 17. e x cossxyd < x 1 1 18. 
y 2 1
x 1 1

< x 1 y 2 1

The differential dw is defined in terms of the differentials dx, dy, and dz of the independ-
ent variables by

dw −
−w
−x

 dx 1
−w
−y

 dy 1
−w
−z

 dz

EXAMPLE 6 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within 0.2 cm. Use differentials to esti- 
mate the largest possible error when the volume of the box is calculated from these 
measurements.

SOLUTION If the dimensions of the box are x, y, and z, its volume is V − xyz and so

dV −
−V
−x

 dx 1
−V
−y

 dy 1
−V
−z

 dz − yz dx 1 xz dy 1 xy dz

We are given that | Dx | < 0.2, | Dy | < 0.2, and | Dz | < 0.2. To estimate the largest 
error in the volume, we therefore use dx − 0.2, dy − 0.2, and dz − 0.2 together with 
x − 75, y − 60, and z − 40:

 DV < dV − s60ds40ds0.2d 1 s75ds40ds0.2d 1 s75ds60ds0.2d − 1980

Thus an error of only 0.2 cm in measuring each dimension could lead to an error of 
approximately 1980 cm3 in the calculated volume! This may seem like a large error, but 
it’s only about 1% of the volume of the box. 
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 25–30 Find the differential of the function.

 25. z − e22x cos 2!t 26. u − sx 2 1 3y 2 

 27. m − p5q3 28. T −
v

1 1 uvw

 29. R − "# 2 cos $ 30. L − xze2y 22z 2

 31.  If z − 5x 2 1 y 2 and sx, yd changes from s1, 2d to s1.05, 2.1d, 
compare the values of Dz and dz.

 32.  If z − x 2 2 xy 1 3y 2 and sx, yd changes from s3, 21d to 
s2.96, 20.95d, compare the values of Dz and dz.

 33.  The length and width of a rectangle are measured as 30 cm 
and 24 cm, respectively, with an error in measurement of at 
most 0.1 cm in each. Use differentials to estimate the maxi-
mum error in the calculated area of the rectangle.

 34.  Use differentials to estimate the amount of metal in a closed 
cylindrical can that is 10 cm high and 4 cm in diameter if the 
metal in the top and bottom is 0.1 cm thick and the metal in 
the sides is 0.05 cm thick.

 35.  Use differentials to estimate the amount of tin in a closed tin 
can with diameter 8 cm and height 12 cm if the tin is 0.04 cm 
thick.

 36.  The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

  where T is the temperature sin 8Cd and v is the wind speed 
sin kmyhd. The wind speed is measured as 26 kmyh, with a 
possible error of 62 kmyh, and the temperature is measured  
as 2118C, with a possible error of 618C. Use differentials to 
estimate the maximum error in the calculated value of W due  
to the measurement errors in T and v.

 37.  The tension T in the string of the yo-yo in the figure is

T −
mtR

2r 2 1 R 2

  where m is the mass of the yo-yo and t is acceleration due to 
gravity. Use differentials to estimate the change in the tension  
if R is increased from 3 cm to 3.1 cm and r is increased from 
0.7 cm to 0.8 cm. Does the tension increase or decrease?
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 38.  The pressure, volume, and temperature of a mole of an ideal 
gas are related by the equation PV − 8.31T, where P is mea-
sured in kilopascals, V in liters, and T in kelvins. Use differ- 
entials to find the approximate change in the pressure if the 
volume increases from 12 L to 12.3 L and the temperature 
decreases from 310 K to 305 K.

 19.  Given that f  is a differentiable function with f s2, 5d − 6, 
fx s2, 5d − 1, and fy s2, 5d − 21, use a linear approximation  
to estimate f s2.2, 4.9d.

 20.  Find the linear approximation of the function 
f sx, yd − 1 2 xy cos !y at s1, 1d and use it to approximate 
f s1.02, 0.97d. Illustrate by graphing f  and the tangent plane.

 21.  Find the linear approximation of the function
   f sx, y, zd − sx 2 1 y 2 1 z 2  at s3, 2, 6d and use it to  

approximate the number ss3.02d 2 1 s1.97d 2 1 s5.99d 2 .

 22.  The wave heights h in the open sea depend on the speed v 
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table. Use the table to find 
a linear approximation to the wave height function when v 
is near 40 knots and t is near 20 hours. Then estimate the 
wave heights when the wind has been blowing for 24 hours 
at 43 knots.
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 23.  Use the table in Example 3 to find a linear approximation to 
the heat index function when the temperature is near 948F 
and the relative humidity is near 80%. Then estimate the heat 
index when the temperature is 958F and the relative humidity 
is 78%.

 24.  The wind-chill index W is the perceived temperature when 
the actual temperature is T and the wind speed is v, so we can 
write W − f sT, vd. The following table of values is an excerpt 
from Table 1 in Section 14.1. Use the table to find a linear 
approximation to the wind-chill index function when T is 
near 215°C and v is near 50 kmyh. Then estimate the wind-
chill index when the temperature is 217°C and the wind 
speed is 55 kmyh.
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936 CHAPTER 14  Partial Derivatives

for S but you know that the curves

 r1std − k2 1 3t, 1 2 t 2, 3 2 4t 1 t 2 l

 r2sud − k1 1 u2, 2u3 2 1, 2u 1 1 l

  both lie on S. Find an equation of the tangent plane at P.

 43–44 Show that the function is differentiable by finding values  
of «1 and «2 that satisfy Definition 7.

 43. f sx, yd − x 2 1 y 2 44. f sx, yd − xy 2 5y 2

 45.  Prove that if f  is a function of two variables that is differen-
tiable at sa, bd, then f  is continuous at sa, bd.  

 Hint: Show that

lim
sDx, Dyd l s0, 0d 

 f sa1 Dx, b 1 Dyd − f sa, bd

 46. (a) The function

f sx, yd − H
0

xy
x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

   was graphed in Figure 4. Show that fxs0, 0d and fys0, 0d 
both exist but f  is not differentiable at s0, 0d. [Hint: Use  
the result of Exercise 45.]

 (b)  Explain why fx and fy are not continuous at s0, 0d.

 39.  If R is the total resistance of three resistors, connected in par- 
al lel, with resistances R1, R2, R3, then

1
R

−
1
R1

1
1
R2

1
1
R3

  If the resistances are measured in ohms as R1 − 25 V, 
R2 − 40 V, and R3 − 50 V, with a possible error of 0.5% in 
each case, estimate the maximum error in the calculated value 
of R.

 40.  A model for the surface area of a human body is given by 
S − 0.1091w 0.425h 0.725, where w is the weight (in pounds), h is 
the height (in inches), and S is measured in square feet. If the 
errors in measurement of w and h are at most 2%, use differ- 
entials to estimate the maximum percentage error in the calcu-
lated surface area.

 41.  In Exercise 14.1.39 and Example 14.3.3, the body mass index 
of a person was defined as Bsm, hd − myh2, where m is the 
mass in kilograms and h is the height in meters.

 (a)  What is the linear approximation of Bsm, hd for a child 
with mass 23 kg and height 1.10 m?

 (b)  If the child’s mass increases by 1 kg and height by 3 cm, 
use the linear approximation to estimate the new BMI. 
Compare with the actual new BMI.

 42.  Suppose you need to know an equation of the tangent plane to 
a surface S at the point Ps2, 1, 3d. You don’t have an equation 

Many technological advances have occurred in sports that have contributed to increased athletic 
performance. One of the best known is the introduction, in 2008, of the Speedo LZR racer. It was 
claimed that this full-body swimsuit reduced a swimmer’s drag in the water. Figure 1 shows the 
number of world records broken in men’s and women’s long-course freestyle swimming events 
from 1990 to 2011.1 The dramatic increase in 2008 when the suit was introduced led people 
to claim that such suits are a form of technological doping. As a result all full-body suits were 
banned from competition starting in 2010.
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FIGURE 1 Number of world records set in long-course men’s and women’s freestyle swimming event 1990–2011

It might be surprising that a simple reduction in drag could have such a big effect on 
performance. We can gain some insight into this using a simple mathematical model.2

APPLIED PROJECT THE SPEEDO LZR RACER

1. L. Foster et al., “Influence of Full Body Swimsuits on Competitive Performance,” Procedia Engineering 
34 (2012): 712–17.
2. Adapted from http://plus.maths.org/content/swimming.
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 SECTION 14.5  The Chain Rule 943

Now we suppose that z is given implicitly as a function z − f sx, yd by an equation of 
the form Fsx, y, zd − 0. This means that Fsx, y, f sx, ydd − 0 for all sx, yd in the domain  
of f . If F and f  are differentiable, then we can use the Chain Rule to differentiate the 
equation Fsx, y, zd − 0 as follows:

−F
−x

 
−x
−x

1
−F
−y

 
−y
−x

1
−F
−z

 
−z
−x

− 0

But 
−

−x
 sxd − 1    and    

−

−x
 syd − 0 

so this equation becomes

−F
−x

1
−F
−z

 
−z
−x

− 0

If −Fy−z ± 0, we solve for −zy−x and obtain the first formula in Equations 7. The for-
mula for −zy−y is obtained in a similar manner.

7  
−z
−x

− 2 

−F
−x
−F
−z

      
−z
−y

− 2 

−F
−y
−F
−z

 

Again, a version of the Implicit Function Theorem stipulates conditions under which  
our assumption is valid: if F is defined within a sphere containing sa, b, cd, where 
Fsa, b, cd − 0, Fzsa, b, cd ± 0, and Fx, Fy , and Fz are continuous inside the sphere, then 
the equation Fsx, y, zd − 0 defines z as a function of x and y near the point sa, b, cd and 
this function is differentiable, with partial derivatives given by (7).

EXAMPLE 9 Find 
−z
−x

 and 
−z
−y

 if x 3 1 y 3 1 z3 1 6xyz − 1.

SOLUTION Let Fsx, y, zd − x 3 1 y 3 1 z3 1 6xyz 2 1. Then, from Equations 7, we 
have

 
−z
−x

− 2
Fx

Fz
− 2

3x 2 1 6yz
3z2 1 6xy

− 2
x 2 1 2yz
z2 1 2xy

  
−z
−y

− 2
Fy

Fz
− 2

3y 2 1 6xz
3z2 1 6xy

− 2
y 2 1 2xz
z2 1 2xy

 
The solution to Example 9 should be 
compared to the one in Example 14.3.5.

1–6 Use the Chain Rule to find dzydt or dwydt.

 1. z − xy 3 2 x 2y,  x − t 2 1 1,  y − t 2 2 1

 2. z −
x 2 y

x 1 2y
,  x − e! t,  y − e2! t

 3. z − sin x cos y,  x − st  ,  y − 1yt

 4. z − s1 1 xy ,  x − tan t,  y − arctan t

 5. w − xe yyz,  x − t 2,  y − 1 2 t,  z − 1 1 2t

 6. w − lnsx 2 1 y 2 1 z2 ,  x − sin t,  y − cos t,  z − tan t

7–12 Use the Chain Rule to find −zy−s and −zy−t.

 7. z − sx 2 yd5,  x − s 2t,  y − st 2

 8. z − tan21sx 2 1 y 2d,  x − s ln t,  y − tes
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944 CHAPTER 14  Partial Derivatives

 25.  N −
p 1 q
p 1 r

,  p − u 1 vw,  q− v 1 u w,  r − w 1 u v;

  
−N
−u

, 
−N
−v

, 
−N
−w

  when u − 2, v − 3, w − 4

 26.  u − xe ty,  x − " 2#,  y − # 2$,  t − $ 2";

  
−u
−"

, 
−u
−#

, 
−u
−$

  when " − 21, # − 2, $ − 1

27–30 Use Equation 6 to find dyydx.

 27. y cos x − x 2 1 y 2 28. cossxyd − 1 1 sin y

 29. tan21sx 2yd − x 1 xy 2 30. e y sin x − x 1 xy

31–34 Use Equations 7 to find −zy−x and −zy−y.

 31. x 2 1 2y 2 1 3z2 − 1 32. x 2 2 y 2 1 z2 2 2z − 4

 33. e z − xyz 34. yz 1 x ln y − z2

 35.  The temperature at a point sx, yd is Tsx, yd, measured in degrees 
Celsius. A bug crawls so that its position after t seconds is 

   given by x − s1 1 t  , y − 2 1 1
3 t, where x and y are mea-

sured in centimeters. The temperature func tion satisfies 
Txs2, 3d − 4 and Tys2, 3d − 3. How fast is the temperature 
rising on the bug’s path after 3 seconds?

 36.  Wheat production W in a given year depends on the average 
temperature T and the annual rainfall R. Scientists estimate 
that the average temperature is rising at a rate of 0.15°Cyyear 
and rainfall is decreasing at a rate of 0.1 cmyyear. They also 
estimate that at current production levels, −Wy−T − 22  
and −Wy−R − 8.

 (a)  What is the significance of the signs of these partial  
derivatives?

 (b)  Estimate the current rate of change of wheat production, 
dWydt.

 37.  The speed of sound traveling through ocean water with salinity 
35 parts per thousand has been modeled by the equation

  C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3 1 0.016D

  where C is the speed of sound (in meters per second), T is the 
temperature (in degrees Celsius), and D is the depth below the 
ocean surface (in meters). A scuba diver began a leisurely dive 
into the ocean water; the diver’s depth and the surrounding 
water temperature over time are recorded in the following 
graphs. Estimate the rate of change (with respect to time) of  
the speed of sound through the ocean water experienced by the 
diver 20 minutes into the dive. What are the units?
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 9. z − lns3x 1 2yd,  x − s sin t,  y − t cos s

 10. z − sx e xy,  x − 1 1 st,  y − s 2 2 t 2

 11. z − e r cos %,  r − st,  % − ss 2 1 t 2 

 12. z − tansuyvd,  u − 2s 1 3t,  v − 3s 2 2t

 13.  Let pstd − f ststd, hstdd, where f  is differentiable, ts2d − 4, 
t9s2d − 23, hs2d − 5, h9s2d − 6, fx s4, 5d − 2, fy s4, 5d − 8. 
Find p9s2d.

 14.  Let Rss, td − Gsu ss, td, vss, tdd, where G, u , and v are differen-
tiable, u s1, 2d − 5, u ss1, 2d − 4, u ts1, 2d − 23, vs1, 2d − 7, 
vss1, 2d − 2, v ts1, 2d − 6, Gu s5, 7d − 9, Gvs5, 7d − 22. Find 
Rss1, 2d and Rts1, 2d.

 15.  Suppose f  is a differentiable function of x and y, and 
tsu , vd − f se u 1 sin v, e u 1 cos vd. Use the table of values to 
calculate tus0, 0d and tvs0, 0d.

f t fx fy

s0, 0d 3 6 4 8

s1, 2d 6 3 2 5

 16.  Suppose f  is a differentiable function of x and y, and 
tsr, sd − f s2r 2 s, s 2 2 4rd. Use the table of values in  
Exercise 15 to calculate trs1, 2d and tss1, 2d.

17–20 Use a tree diagram to write out the Chain Rule for the given 
case. Assume all functions are differentiable.

 17. u − f sx, yd,  where x − xsr, s, td, y − ysr, s, td

 18.  w − f sx, y, zd,  where x − xsu , vd, y − ysu , vd, z − zsu , vd

 19.  T − Fsp, q, rd,  where p − psx, y, zd, q− qsx, y, zd, 
r − r sx, y, zd

 20.  R − Fst, u d  where t − t sw, x, y, zd, u − u sw, x, y, zd

 21–26 Use the Chain Rule to find the indicated partial derivatives.

 21.  z − x 4 1 x 2y,  x − s 1 2t 2 u ,  y − stu 2;

  
−z
−s

, 
−z
−t

, 
−z
−u

  when s − 4, t − 2, u − 1

 22.  T −
v

2u 1 v
,  u − pqsr  ,  v − psq  r;

  
−T
−p

, 
−T
−q

, 
−T
−r

  when p − 2, q− 1, r − 4

 23.  w − xy 1 yz 1 zx,  x − r cos %,  y − r sin %,  z − r%;

  
−w
−r

, 
−w
−%

  when r − 2, % − !y2

 24.  P − su 2 1 v2 1 w 2 ,  u − xe y,  v − ye x,  w − e xy;

  
−P
−x

, 
−P
−y

  when x − 0, y − 2
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 SECTION 14.5  The Chain Rule 945

45–48 Assume that all the given functions are differentiable.

 45.  If z − f sx, yd, where x − r cos % and y − r sin %, (a) find −zy−r 
and −zy−% and (b) show that

S −z
−xD2

1 S −z
−yD2

− S −z
−rD2

1
1
r 2  S −z

−%D2

 46.  If u − f sx, yd, where x − e s cos t and y − e s sin t, show that

S −u
−xD2

1 S −u
−yD2

− e22sFS −u
−sD2

1 S −u
−t D2G

 47. If z −
1
x

 f f sx 2 yd 1 tsx 1 ydg, show that 

−

−x
 Sx 2 

−z
−xD − x 2 

−2z
−y 2

 48. If z −
1
y

 f f sax 1 yd 1 tsax 2 ydg, show that 

−2z
−x 2 −

a2

y 2  
−

−y
 1y 2 

−z
−yD

49–54 Assume that all the given functions have continuous  
second-order partial derivatives.

 49.  Show that any function of the form

z − f sx 1 atd 1 tsx 2 atd

 is a solution of the wave equation

−2z
−t 2 − a2 

−2z
−x 2

 [Hint: Let u − x 1 at, v − x 2 at.]

 50.  If u − f sx, yd, where x − e s cos t and y − e s sin t, show that

−2u
−x 2 1

−2u
−y 2 − e22sF −2u

−s 2 1
−2u
−t 2G

 51.  If z − f sx, yd, where x − r 2 1 s 2 and y − 2rs, find −2zy−r −s. 
(Compare with Example 7.)

 52.  If z − f sx, yd, where x − r cos % and y − r sin %, find  
(a) −zy−r, (b) −zy−%, and (c) −2zy−r −%.

 53. If z − f sx, yd, where x − r cos % and y − r sin %, show that 

−2z
−x 2 1

−2z
−y 2 −

−2z
−r 2 1

1
r 2  

−2z
−% 2 1

1
r

 
−z
−r

 54. Suppose z − f sx, yd, where x − tss, td and y − hss, td.
 (a) Show that

 
−2z
−t 2 −

−2z
−x 2  S −x

−t D2

1 2 
−2z

−x −y
 
−x
−t

 
−y
−t

1
−2z
−y 2  S −y

−t D2

     1
−z
−x

 
−2x
−t 2 1

−z
−y

 
−2 y
−t 2

 (b) Find a similar formula for −2zy−s −t.

 38.  The radius of a right circular cone is increasing at a rate of  
1.8 inys while its height is decreasing at a rate of 2.5 inys. At 
what rate is the volume of the cone changing when the radius  
is 120 in. and the height is 140 in.?

 39.  The length ,, width w, and height h of a box change with  
time. At a certain instant the dimensions are , − 1 m and  
w − h− 2 m, and , and w are increasing at a rate of 2 mys 
while h is decreasing at a rate of 3 mys. At that instant find the 
rates at which the following quantities are changing.

 (a) The volume
 (b) The surface area
 (c) The length of a diagonal

 40.  The voltage V in a simple electrical circuit is slowly decreasing 
as the battery wears out. The resistance R is slowly increas-
ing as the resistor heats up. Use Ohm’s Law, V − IR, to find 
how the current I is changing at the moment when R − 400 V, 
I − 0.08 A, dVydt − 20.01 Vys, and dRydt − 0.03 Vys.

 41.  The pressure of 1 mole of an ideal gas is increasing at a rate  
of 0.05 kPays and the temperature is increasing at a rate of  
0.15 Kys. Use the equation PV − 8.31T in Example 2 to find 
the rate of change of the volume when the pressure is 20 kPa 
and the temperature is 320 K.

 42.   A manufacturer has modeled its yearly production function P 
(the value of its entire production, in millions of dollars) as a 
Cobb-Douglas function

PsL, Kd − 1.47L0.65K 0.35

  where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars). Suppose that when 
L − 30 and K − 8, the labor force is decreasing at a rate of 
2000 labor hours per year and capital is increasing at a rate of 
$500,000 per year. Find the rate of change of production.

 43.  One side of a triangle is increasing at a rate of 3 cmys and a 
second side is decreasing at a rate of 2 cmys. If the area of the 
triangle remains constant, at what rate does the angle between 
the sides change when the first side is 20 cm long, the second 
side is 30 cm, and the angle is !y6?

 44.  A sound with frequency fs is produced by a source traveling 
along a line with speed vs. If an observer is traveling with  
speed vo along the same line from the opposite direction toward 
the source, then the frequency of the sound heard by the 
observer is

fo − S c 1 vo

c 2 vs
D fs

  where c is the speed of sound, about 332 mys. (This is the  
Doppler effect.) Suppose that, at a particular moment, you  
are in a train traveling at 34 mys and accelerating at 1.2 mys2.  
A train is approaching you from the opposite direction on the 
other track at 40 mys, accelerating at 1.4 mys2, and sounds its 
whistle, which has a frequency of 460 Hz. At that instant, what 
is the perceived frequency that you hear and how fast is it 
changing?
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946 CHAPTER 14  Partial Derivatives

 57.  If f  is homogeneous of degree n, show that 

fxst x, t yd − t n21fxsx, yd

 58.  Suppose that the equation Fsx, y, zd − 0 implicitly defines each 
of the three variables x, y, and z as functions of the other two: 
z − f sx, yd, y − tsx, zd, x − hsy, zd. If F is differentiable and 
Fx, Fy, and Fz are all nonzero, show that

−z
−x

 
−x
−y

 
−y
−z

− 21

 59.  Equation 6 is a formula for the derivative dyydx of a function 
defined implicitly by an equation F sx, yd − 0, provided that F  
is differentiable and Fy ± 0. Prove that if F has continuous sec-
ond derivatives, then a formula for the second derivative of y is

d 2 y
dx 2 − 2

FxxFy
2 2 2FxyFxFy 1 FyyFx

2

Fy
3  

 55.  A function f  is called homogeneous of degree n if it satisfies 
the equation 

f st x, t yd − t nf sx, yd 

   for all t, where n is a positive integer and f  has continuous 
second-order partial derivatives.

 (a)  Verify that f sx, yd − x 2y 1 2xy 2 1 5y 3 is homogeneous  
of degree 3.

 (b)  Show that if f  is homogeneous of degree n, then

x 
−f
−x

1 y 
−f
−y

− n f sx, yd

   [Hint: Use the Chain Rule to differentiate f stx, t yd with 
respect to t.]

 56. If f  is homogeneous of degree n, show that

x2 
−2f
−x 2 1 2xy 

−2f
−x −y

1 y 2 
−2f
−y 2 − nsn 2 1d f sx, yd

The weather map in Figure 1 shows a contour map of the temperature function Tsx, yd for 
the states of California and Nevada at 3:00 pm on a day in October. The level curves, or 
isothermals, join locations with the same temperature. The partial derivative Tx at a loca-
tion such as Reno is the rate of change of temperature with respect to distance if we travel 
east from Reno; Ty is the rate of change of temperature if we travel north. But what if we 
want to know the rate of change of temperature when we travel southeast (toward Las 
Vegas), or in some other direction? In this section we introduce a type of derivative, 
called a directional derivative, that enables us to find the rate of change of a function of 
two or more variables in any direction.

Directional Derivatives
Recall that if z − f sx, yd, then the partial derivatives fx and fy are defined as

1  

  fxsx0, y0 d − lim
h l 0

 
 f sx0 1 h, y0 d 2 f sx0, y0 d

h
 

 fysx0, y0 d − lim
h l 0

 
 f sx0, y0 1 hd 2 f sx0, y0 d

h

and represent the rates of change of z in the x- and y-directions, that is, in the directions 
of the unit vectors i and j.

Suppose that we now wish to find the rate of change of z at sx0, y0 d in the direction of 
an arbitrary unit vector u − ka, bl. (See Figure 2.) To do this we consider the surface S  
with the equation z − f sx, yd (the graph of f ) and we let z0 − f sx0, y0 d. Then the point 
Psx0, y0, z0 d lies on S . The vertical plane that passes through P in the direction of u inter-
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956 CHAPTER 14  Partial Derivatives

as in Figure 12 by making it perpendicular to all of the contour lines. This phenomenon 
can also be noticed in Figure 14.1.12, where Lonesome Creek follows a curve of steep est 
descent.

Computer algebra systems have commands that plot sample gradient vectors. Each 
gradient vector = f sa, bd is plotted starting at the point sa, bd. Figure 13 shows such a plot 
(called a gradien t vector field) for the function f sx, yd − x 2 2 y 2 superimposed on a 
contour map of f. As expected, the gradient vectors point “uphill” and are perpendicular 
to the level curves.

x
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300
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100

curve of
steepest
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FIGURE 12

FIGURE 13

 1.   Level curves for barometric pressure (in millibars) are shown 
for 6:00 am on a day in November. A deep low with pressure 
972 mb is moving over northeast Iowa. The distance along the 
red line from K (Kearney, Nebraska) to S (Sioux City, Iowa) is 
300 km. Estimate the value of the directional derivative of the 
pressure function at Kearney in the direction of Sioux City. 
What are the units of the directional derivative?
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 2.  The contour map shows the average maximum temperature for 
November 2004 (in 8C ). Estimate the value of the directional 

derivative of this temperature function at Dubbo, New South 
Wales, in the direction of Sydney. What are the units?
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 3.  A table of values for the wind-chill index W − f sT, vd is given 
in Exercise 14.3.3 on page 923. Use the table to estimate the 
value of Du f s220, 30d, where u − si 1 jdys2 .

 4–6 Find the directional derivative of f  at the given point in the 
direction indicated by the angle !.

 4. f sx, yd − xy 3 2 x 2,  s1, 2d,  ! − "y3
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 SECTION 14.6  Directional Derivatives and the Gradient Vector 957

 25. f sx, y, zd − xysy 1 zd,  s8, 1, 3d

 26. f sp, q, rd − arctanspqrd,  s1, 2, 1d

 27.  (a)  Show that a differentiable function f  decreases most rap-
idly at x in the direction opposite to the gradient vector, 
that is, in the direction of 2= f sxd.

 (b)  Use the result of part (a) to find the direction in which the 
function f sx, yd − x 4y 2 x 2 y 3 decreases fastest at the  
point s2, 23d.

 28.  Find the directions in which the directional derivative of 
f sx, yd − x 2 1 xy 3 at the point s2, 1d has the value 2.

 29.   Find all points at which the direction of fastest change of the 
function f sx, yd − x 2 1 y 2 2 2x 2 4y is i 1 j.

 30.  Near a buoy, the depth of a lake at the point with coordi nates 
sx, yd is z − 200 1 0.02x 2 2 0.001y 3, where x, y, and z are 
measured in meters. A fisherman in a small boat starts at the 
point s80, 60d and moves toward the buoy, which is located at 
s0, 0d. Is the water under the boat getting deeper or shallower 
when he departs? Explain.

 31.  The temperature T in a metal ball is inversely proportional to 
the distance from the center of the ball, which we take to be 
the origin. The temperature at the point s1, 2, 2d is 1208.

 (a)  Find the rate of change of T at s1, 2, 2d in the direction 
toward the point s2, 1, 3d.

 (b)  Show that at any point in the ball the direction of greatest 
increase in temperature is given by a vector that points 
toward the origin.

 32. The temperature at a point sx, y, zd is given by 

Tsx, y, zd − 200e2x 223y 229z 2

 where T is measured in 8C and x, y, z in meters.
 (a)  Find the rate of change of temperature at the point 

Ps2, 21, 2d in the direction toward the point s3, 23, 3d.
 (b)  In which direction does the temperature increase fastest  

at P?
 (c) Find the maximum rate of increase at P.

 33.  Suppose that over a certain region of space the electrical 
potential V is given by Vsx, y, zd − 5x 2 2 3xy 1 xyz.

 (a)  Find the rate of change of the potential at Ps3, 4, 5d in the 
direction of the vector v − i 1 j 2 k.

 (b) In which direction does V change most rapidly at P?
 (c) What is the maximum rate of change at P?

 34.  Suppose you are climbing a hill whose shape is given by the 
equation z − 1000 2 0.005x 2 2 0.01y 2, where x, y, and z 
are measured in meters, and you are standing at a point with 
coordinates s60, 40, 966d. The positive x-axis points east and 
the positive y-axis points north.

 (a)  If you walk due south, will you start to ascend or descend? 
At what rate?

 5. f sx, yd − y cossxyd,  s0, 1d,  ! − "y4

 6. f sx, yd − s2x 1 3y ,  s3, 1d,  ! − 2"y6

7–10
 (a) Find the gradient of f .
 (b) Evaluate the gradient at the point P.
 (c)  Find the rate of change of f  at P in the direction of the  

vector u.

 7. f sx, yd − xyy,  Ps2, 1d,  u − 3
5 i 1 4

5 j

 8. f sx, yd − x 2 ln y,  Ps3, 1d,  u − 2 5
13 i 1 12

13 j

 9. f sx, y, zd − x 2yz 2 xyz 3,  Ps2, 21, 1d,  u − k0, 4
5 , 23

5 l
 10. f sx, y, zd − y 2e xyz,  Ps0, 1, 21d,  u − k 3

13, 4
13, 12

13 l

 11–17 Find the directional derivative of the function at the given 
point in the direction of the vector v.

 11. f sx, yd − e x sin y,  s0, "y3d,  v − k26, 8 l

 12. f sx, yd −
x

x 2 1 y 2 ,  s1, 2d,  v − k3, 5 l

 13. tss, td − s st  ,  s2, 4d,  v − 2 i 2 j

 14. tsu, vd − u2e2v,  s3, 0d,  v − 3 i 1 4 j

 15. f sx, y, zd − x 2y 1 y 2z,  s1, 2, 3d,  v − k2, 21, 2 l

 16. f sx, y, zd − xy 2 tan21z,  s2, 1, 1d,  v − k1, 1, 1 l

 17.  hsr, s, td − lns3r 1 6s 1 9td,  s1, 1, 1d,  
v − 4 i 1 12 j 1 6k

 18.  Use the figure to estimate Du f s2, 2d.
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x0

(2, 2)

±f(2, 2)
u

 19.  Find the directional derivative of f sx, yd − sxy  at Ps2, 8d in 
the direction of Qs5, 4d.

 20.  Find the directional derivative of f sx, y, zd − xy 2z 3 at 
Ps2, 1, 1d in the direction of Qs0, 23, 5d.

 21–26 Find the maximum rate of change of f  at the given point 
and the direction in which it occurs.

 21. f sx, yd − 4ysx ,  s4, 1d

 22. f ss, td − te st,  s0, 2d

 23. f sx, yd − sinsxyd,  s1, 0d

 24. f sx, y, zd − x lnsyzd,  (1, 2, 12)
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958 CHAPTER 14  Partial Derivatives

 39.  The second directional derivative of f sx, yd is

Du
2 f sx, yd − DufDu f sx, ydg

  If f sx, yd − x 3 1 5x 2y 1 y 3 and u − k3
5, 45 l , calculate 

Du
2 f s2, 1d.

 40. (a)  If u − ka, bl is a unit vector and f  has continuous  
second partial derivatives, show that

Du
2 f − fxx a2 1 2 fxy ab 1 fyy b2

 (b)  Find the second directional derivative of f sx, yd − xe 2y in 
the direction of v − k4, 6 l.

 41–46 Find equations of (a) the tangent plane and (b) the normal 
line to the given surface at the specified point.

 41. 2sx 2 2d2 1 sy 2 1d2 1 sz 2 3d2 − 10,  s3, 3, 5d

 42. x − y 2 1 z 2 1 1,  s3, 1, 21d

 43. xy 2z 3 − 8,  s2, 2, 1d

 44. xy 1 yz 1 zx − 5,  s1, 2, 1d

 45. x 1 y 1 z − e xyz,  s0, 0, 1d

 46.  x 4 1 y 4 1 z 4 − 3x 2y 2z 2,  s1, 1, 1d

 47–48 Use a computer to graph the surface, the tangent plane, 
and the normal line on the same screen. Choose the domain 
carefully so that you avoid extraneous vertical planes. Choose the 
viewpoint so that you get a good view of all three objects.

 47. xy 1 yz 1 zx − 3,  s1, 1, 1d 48. xyz − 6,  s1, 2, 3d

 49.  If f sx, yd − xy, find the gradient vector = f s3, 2d and use it  
to find the tangent line to the level curve f sx, yd − 6 at the 
point s3, 2d. Sketch the level curve, the tangent line, and the 
gradient vector.

 50.  If tsx, yd − x 2 1 y 2 2 4x, find the gradient vector =ts1, 2d  
and use it to find the tangent line to the level curve 
tsx, yd − 1 at the point s1, 2d. Sketch the level curve, the 
tangent line, and the gradient vector.

 51.  Show that the equation of the tangent plane to the ellipsoid 
x 2ya2 1 y 2yb 2 1 z2yc 2 − 1 at the point sx0, y0, z0 d can be 
written as

xx0

a2 1
 yy0

b 2 1
zz0

c 2 − 1

 52.  Find the equation of the tangent plane to the hyperboloid 
x 2ya2 1 y 2yb 2 2 z2yc 2 − 1 at sx0, y0, z0 d and express it in a 
form similar to the one in Exercise 51.

 53.  Show that the equation of the tangent plane to the elliptic 
paraboloid zyc − x 2ya2 1 y 2yb 2 at the point sx0, y0, z0 d can 
be written as

2xx0

a2 1
2yy0

b 2 −
z 1 z0

c

;

 (b)  If you walk northwest, will you start to ascend or 
descend? At what rate?

 (c)  In which direction is the slope largest? What is the rate of 
ascent in that direction? At what angle above the horizon-
tal does the path in that direction begin?

 35.  Let f  be a function of two variables that has continuous 
partial derivatives and consider the points As1, 3d, Bs3, 3d, 
Cs1, 7d, and Ds6, 15d. The directional derivative of f  at A in 
the direction of the vector AB

l
 is 3 and the directional deriva-

tive at A in the direction of AC
l

 is 26. Find the directional 
derivative of f  at A in the direction of the vector AD

l
.

 36.  Shown is a topographic map of Blue River Pine Provincial 
Park in British Columbia. Draw curves of steepest descent 
from point A (descending to Mud Lake) and from point B.
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 37.  Show that the operation of taking the gradient of a function 
has the given property. Assume that u and v are differen tiable 
functions of x and y and that a, b are constants.

 (a) =sau 1 bvd − a=u 1 b =v 

 (b) =suvd − u =v 1 v =u

 (c) =S u
vD −

v =u 2 u =v
v 2   (d) =un − nu n21 =u

 38.  Sketch the gradient vector = f s4, 6d for the function f  whose 
level curves are shown. Explain how you chose the direction 
and length of this vector.
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 SECTION 14.7  Maximum and Minimum Values 959

 65.  Where does the helix rstd − kcos !t, sin !t, tl intersect the 
paraboloid z − x 2 1 y 2? What is the angle of intersection 
between the helix and the paraboloid? (This is the angle 
between the tangent vector to the curve and the tangent 
plane to the paraboloid.)

 66.  The helix rstd − kcoss!ty2d, sins!ty2d, t l intersects the 
sphere x 2 1 y 2 1 z 2 − 2 in two points. Find the angle of 
intersection at each point.

 67. (a)  Two surfaces are called orthogonal at a point of inter-
section if their normal lines are perpendicular at that 
point. Show that surfaces with equations Fsx, y, zd − 0 
and Gsx, y, zd − 0 are orthogonal at a point P where 
=F ± 0 and =G ± 0 if and only if

 Fx Gx 1 FyGy 1 Fz Gz − 0  at P

 (b)  Use part (a) to show that the surfaces z2 − x 2 1 y 2 and 
x 2 1 y 2 1 z2 − r 2 are orthogonal at every point of  
intersection. Can you see why this is true without using  
calculus?

 68. (a)  Show that the function f sx, yd − s3 xy  is continuous 
and the partial derivatives fx and fy exist at the origin 
but the directional derivatives in all other directions do 
not exist.

 (b)  Graph f  near the origin and comment on how the graph 
confirms part (a).

 69.  Suppose that the directional derivatives of f sx, yd are known 
at a given point in two nonparallel directions given by unit 
vectors u and v. Is it possible to find = f  at this point? If so, 
how would you do it?

 70.  Show that if z − f sx, yd is differentiable at x0 − kx0, y0 l, 
then

lim 
x l x0

 
 f sxd 2 f sx0 d 2 = f sx0 d ? sx 2 x0 d

| x 2 x0 | − 0

 [Hint: Use Definition 14.4.7 directly.]

;

 54.  At what point on the ellipsoid x 2 1 y 2 1 2z2 − 1 is the 
tangent plane parallel to the plane x 1 2y 1 z − 1?

 55.  Are there any points on the hyperboloid x 2 2 y 2 2 z2 − 1 
where the tangent plane is parallel to the plane z − x 1 y?

 56.  Show that the ellipsoid 3x 2 1 2y 2 1 z2 − 9 and the sphere 
x 2 1 y 2 1 z2 2 8x 2 6y 2 8z 1 24 − 0 are tangent to 
each other at the point s1, 1, 2d. (This means that they have 
a common tangent plane at the point.)

 57.  Show that every plane that is tangent to the cone 
x 2 1 y 2 − z2 passes through the origin.

 58.  Show that every normal line to the sphere x 2 1 y 2 1 z2 − r 2 
passes through the center of the sphere.

 59.  Where does the normal line to the paraboloid z − x 2 1 y 2 
at the point s1, 1, 2d intersect the paraboloid a second time?

 60.  At what points does the normal line through the point 
s1, 2, 1d on the ellipsoid 4x 2 1 y 2 1 4z 2 − 12 intersect the 
sphere x 2 1 y 2 1 z 2 − 102?

 61.  Show that the sum of the x-, y-, and z-intercepts of any 
tangent plane to the surface sx 1 sy 1 sz − sc  is a 
constant.

 62.  Show that the pyramids cut off from the first octant by any 
tangent planes to the surface xyz − 1 at points in the first 
octant must all have the same volume.

 63.  Find parametric equations for the tangent line to the curve 
of intersection of the paraboloid z − x 2 1 y 2 and the ellip-
soid 4x 2 1 y 2 1 z2 − 9 at the point s21, 1, 2d.

 64. (a)  The plane y 1 z − 3 intersects the cylinder x 2 1 y 2 − 5 
in an ellipse. Find parametric equations for the tangent 
line to this ellipse at the point s1, 2, 1d.

   (b)  Graph the cylinder, the plane, and the tangent line on 
the same screen.

;

As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding maxi-
mum and minimum values (extreme values). In this section we see how to use partial 
derivatives to locate maxima and minima of functions of two variables. In particular, in 
Example 6 we will see how to maximize the volume of a box without a lid if we have a 
fixed amount of cardboard to work with.

Look at the hills and valleys in the graph of f  shown in Figure 1. There are two points 
sa, bd where f  has a local maximum, that is, where f sa, bd is larger than nearby values of 
f sx, yd. The larger of these two values is the absolute maximum. Likewise, f  has two 
local minima, where f sa, bd is smaller than nearby values. The smaller of these two val-
ues is the absolute minimum.
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local
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FIGURE 1 
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 SECTION 14.7  Maximum and Minimum Values 967

We close this section by giving a proof of the first part of the Second Derivatives Test.  
Part (b) has a similar proof.

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative of 
f  in the direction of u − kh, kl. The first-order derivative is given by Theorem 14.6.3:

Du f − fx h 1 fy k

Applying this theorem a second time, we have

  D 2
u  f − DusDu f d −

−

−x
 sDu f dh 1

−

−y
 sDu f dk

  − s fxx h 1 fyx kdh 1 s fxy h 1 fyy kdk

  − fxx h2 1 2 fxy hk 1 fyy k 2     (by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

10  D 2
u f − fxxSh 1

 fxy

fxx
 kD2

1
k 2

fxx
 s fxx fyy 2 f 2

xyd 

We are given that fxxsa, bd . 0 and Dsa, bd . 0. But fxx and D − fxx fyy 2 fxy
2  are con- 

tinuous functions, so there is a disk B with center sa, bd and radius " . 0 such that 
fxxsx, yd . 0 and Dsx, yd . 0 whenever sx, yd is in B. Therefore, by looking at Equa-
tion 10, we see that Du

2 fsx, yd . 0 whenever sx, yd is in B. This means that if C is  
the curve obtained by intersecting the graph of f  with the vertical plane through 
Psa, b, f sa, bdd in the direction of u, then C is concave upward on an interval of length 
2". This is true in the direction of every vector u, so if we restrict sx, yd to lie in B, the 
graph of f  lies above its horizontal tangent plane at P. Thus f sx, yd > f sa, bd whenever 
sx, yd is in B. This shows that f sa, bd is a local minimum. 

 1.   Suppose s1, 1d is a critical point of a function f  with contin-
uous second derivatives. In each case, what can you say  
about f ?

 (a) fxxs1, 1d − 4,   fx ys1, 1d − 1,   fyys1, 1d − 2

 (b) fxxs1, 1d − 4,   fx ys1, 1d − 3,   fyys1, 1d − 2

 2.  Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say  
about t?

 (a) txxs0, 2d − 21,   tx ys0, 2d − 6,   tyys0, 2d − 1

 (b) txxs0, 2d − 21,   tx ys0, 2d − 2,   tyys0, 2d − 28

 (c) txxs0, 2d − 4,     tx ys0, 2d − 6,   tyys0, 2d − 9

 3–4 Use the level curves in the figure to predict the location of  
the critical points of f  and whether f  has a saddle point or a local 
maximum or minimum at each critical point. Explain your 

 reasoning. Then use the Second Derivatives Test to confirm your 
predictions.

 3. f sx, yd − 4 1 x 3 1 y 3 2 3xy
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968 CHAPTER 14  Partial Derivatives

 23–26 Use a graph or level curves or both to estimate the local  
maximum and minimum values and saddle point(s) of the 
function. Then use calculus to find these values precisely.

 23. f sx, yd − x 2 1 y 2 1 x22y22

 24. f sx, yd − sx 2 yde2x22y2

 25.  f sx, yd − sin x 1 sin y 1 sinsx 1 yd, 
0 < x < 2!, 0 < y < 2!

 26.  f sx, yd − sin x 1 sin y 1 cossx 1 yd, 
0 < x < !y4, 0 < y < !y4

27–30 Use a graphing device as in Example 4 (or Newton’s 
method or solve numerically using a calculator or computer) to 
find the critical points of f  correct to three decimal places. Then 
classify the critical points and find the highest or lowest points on 
the graph, if any.

 27. f sx, yd − x 4 1 y 4 2 4x 2y 1 2y

 28. f sx, yd − y 6 2 2y 4 1 x 2 2 y 2 1 y

 29. f sx, yd − x 4 1 y 3 2 3x 2 1 y 2 1 x 2 2y 1 1

 30. f sx, yd − 20e2x22y2
 sin 3x cos 3y,  | x | < 1,  | y | < 1

31–38 Find the absolute maximum and minimum values of f  on 
the set D.

 31.  f sx, yd − x 2 1 y 2 2 2x,  D is the closed triangular region 
with vertices s2, 0d, s0, 2d, and s0, 22d

 32.  f sx, yd − x 1 y 2 xy,  D is the closed triangular region 
with vertices s0, 0d, s0, 2d, and s4, 0d

 33.  f sx, yd − x 2 1 y 2 1 x 2 y 1 4, 
D − hsx, yd | | x | < 1, | y | < 1j

 34.  f sx, yd − x 2 1 xy 1 y 2 2 6y, 
D − hsx, yd | 23 < x < 3, 0 < y < 5j

 35.  f sx, yd − x 2 1 2y 2 2 2x 2 4y 1 1, 
D − hsx, yd | 0 < x < 2, 0 < y < 3j

 36.  f sx, yd − xy 2,  D − hsx, yd | x > 0, y > 0, x 2 1 y 2 < 3j

 37. f sx, yd − 2x 3 1 y 4,  D − hsx, yd | x 2 1 y 2 < 1j

 38.  f sx, yd − x 3 2 3x 2 y 3 1 12y,  D is the quadrilateral 
whose vertices are s22, 3d, s2, 3d, s2, 2d, and s22, 22d

 39.  For functions of one variable it is impossible for a con tinuous 
function to have two local maxima and no local minimum. 
But for functions of two variables such functions exist. Show 
that the function

f sx, yd − 2sx 2 2 1d2 2 sx 2 y 2 x 2 1d2

  has only two critical points, but has local maxima at both of 
them. Then use a computer to produce a graph with a care-
fully chosen domain and viewpoint to see how this is  
possible.

;

;

;

 4. f sx, yd − 3x 2 x 3 2 2y 2 1 y 4
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 5–20 Find the local maximum and minimum values and saddle 
point(s) of the function. If you have three-dimensional graphing 
software, graph the function with a domain and viewpoint that 
reveal all the important aspects of the function.

 5. f sx, yd − x 2 1 xy 1 y 2 1 y

 6. f sx, yd − xy 2 2x 2 2y 2 x 2 2 y 2

 7. f sx, yd − sx 2 yds1 2 xyd

 8. f sx, yd − yse x 2 1d

 9. f sx, yd − x 2 1 y 4 1 2xy

 10. f sx, yd − 2 2 x 4 1 2x 2 2 y 2

 11. f sx, yd − x 3 2 3x 1 3xy 2

 12. f sx, yd − x 3 1 y 3 2 3x 2 2 3y 2 2 9x

 13. f sx, yd − x 4 2 2x 2 1 y 3 2 3y

 14. f sx, yd − y cos x

 15. f sx, yd − e x cos y

 16. f sx, yd − xye2sx21y2dy2

 17. f sx, yd − xy 1 e2xy

 18. f sx, yd − sx 2 1 y 2de2x

19.  f sx, yd − y 2 2 2y cos x,  21 < x < 7

 20. f sx, yd − sin x sin y,  2! , x , !,  2! , y , !

 21.  Show that f sx, yd − x 2 1 4y 2 2 4xy 1 2 has an infinite 
number of critical points and that D − 0 at each one. Then 
show that f  has a local (and absolute) minimum at each 
critical point.

 22.  Show that f sx, yd − x 2ye2x22y2
 has maximum values at 

   (61, 1ys2 ) and minimum values at (61, 21ys2 ). Show 
also that f  has infinitely many other critical points and 
D − 0 at each of them. Which of them give rise to maximum 
values? Minimum values? Saddle points?
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 (b)  Find the dimensions that minimize heat loss. (Check both 
the critical points and the points on the boundary of the 
domain.)

 (c)  Could you design a building with even less heat loss if 
the restrictions on the lengths of the walls were removed?

 55.  If the length of the diagonal of a rectangular box must be L, 
what is the largest possible volume?

 56.  A model for the yield Y of an agricultural crop as a function 
of the nitrogen level N and phosphorus level P in the soil 
(measured in appropriate units) is

YsN, Pd − kNPe2N2P

  where k is a positive constant. What levels of nitrogen and 
phosphorus result in the best yield?

 57.  The Shannon index (sometimes called the Shannon-Wiener 
index or Shannon-Weaver index) is a measure of diversity in 
an ecosystem. For the case of three species, it is defined as

H − 2p1 ln p1 2 p2 ln p2 2 p3 ln p3

  where pi is the proportion of species i in the ecosystem.
 (a)  Express H as a function of two variables using the fact 

that p1 1 p2 1 p3 − 1.
 (b) What is the domain of H?
 (c)  Find the maximum value of H. For what values of  

p1, p2, p3 does it occur?

 58.  Three alleles (alternative versions of a gene) A, B, and O  
determine the four blood types A (AA or AO), B (BB or 
BO), O (OO), and AB. The Hardy-Weinberg Law states that 
the proportion of individuals in a population who carry two 
different alleles is

P − 2pq 1 2pr 1 2rq

  where p, q , and r are the proportions of A, B, and O in the  
population. Use the fact that p 1 q 1 r − 1 to show that P is 
at most 23.

 59.  Suppose that a scientist has reason to believe that two 
quan ti ties x and y are related linearly, that is, y − mx 1 b, 
at least approximately, for some values of m and b. The 
scientist performs an experiment and collects data in the 
form of points sx1, y1d, sx2, y2 d, . . . , sxn , yn d, and then plots 
these points. The points don’t lie exactly on a straight line, 
so the scientist wants to find constants m and b so that the 
line y − mx 1 b “fits” the points as well as possible (see the 
figure).
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 40.  If a function of one variable is continuous on an interval and 
has only one critical number, then a local maximum has to 
be an absolute maximum. But this is not true for functions of 
two variables. Show that the function

f sx, yd − 3xe y 2 x 3 2 e 3y

  has exactly one critical point, and that f  has a local maxi mum 
there that is not an absolute maximum. Then use a computer 
to produce a graph with a carefully chosen domain and view-
point to see how this is possible.

 41.  Find the shortest distance from the point s2, 0, 23d to the 
plane x 1 y 1 z − 1.

 42.  Find the point on the plane x 2 2y 1 3z − 6 that is closest 
to the point s0, 1, 1d.

 43.  Find the points on the cone z 2 − x 2 1 y 2 that are closest to 
the point s4, 2, 0d.

 44.  Find the points on the surface y 2 − 9 1 xz that are closest to 
the origin.

 45.  Find three positive numbers whose sum is 100 and whose  
product is a maximum.

 46.  Find three positive numbers whose sum is 12 and the sum of 
whose squares is as small as possible.

 47.  Find the maximum volume of a rectangular box that is 
inscribed in a sphere of radius r.

 48.  Find the dimensions of the box with volume 1000 cm3 that 
has minimal surface area.

 49.  Find the volume of the largest rectangular box in the first 
octant with three faces in the coordinate planes and one  
vertex in the plane x 1 2y 1 3z − 6.

 50.  Find the dimensions of the rectangular box with largest  
volume if the total surface area is given as 64 cm2.

 51.  Find the dimensions of a rectangular box of maximum 
volume such that the sum of the lengths of its 12 edges  
is a constant c.

 52.  The base of an aquarium with given volume V is made of 
slate and the sides are made of glass. If slate costs five times 
as much (per unit area) as glass, find the dimensions of the 
aquarium that minimize the cost of the materials.

 53.  A cardboard box without a lid is to have a volume of 
32,000 cm3. Find the dimensions that minimize the amount  
of cardboard used.

 54.  A rectangular building is being designed to minimize  
heat loss. The east and west walls lose heat at a rate of 
10 unitsym2 per day, the north and south walls at a rate of 
8 unitsym2 per day, the floor at a rate of 1 unitym2 per day, 
and the roof at a rate of 5 unitsym2 per day. Each wall must 
be at least 30 m long, the height must be at least 4 m, and the 
volume must be exactly 4000 m3.

 (a)  Find and sketch the domain of the heat loss as a function 
of the lengths of the sides.

;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



970 CHAPTER 14  Partial Derivatives

  and  m o
n

i−1
 xi

2 1 b o
n

i−1
 xi − o

n

i−1
 xi yi

  Thus the line is found by solving these two equations in the 
two unknowns m and b. (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

 60.  Find an equation of the plane that passes through the point 
s1, 2, 3d and cuts off the smallest volume in the first octant.

    Let di − yi 2 smxi 1 bd be the vertical deviation of the point 
sxi, yid from the line. The method of least squares determines 
m and b so as to minimize o n

i−1 d 2
i , the sum of the squares of 

these deviations. Show that, according to this method, the line 
of best fit is obtained when

m o
n

i−1
 xi 1 bn − o

n

i−1
 yi

For this project we locate a rectangular trash Dumpster in order to study its shape and construc-
tion. We then attempt to determine the dimensions of a container of similar design that minimize  
con struction cost.

1.  First locate a trash Dumpster in your area. Carefully study and describe all details of its con-
struction, and determine its volume. Include a sketch of the container.

2.  While maintaining the general shape and method of construction, determine the dimensions 
such a container of the same volume should have in order to minimize the cost of construc-
tion. Use the following assumptions in your analysis:

●  The sides, back, and front are to be made from 12-gauge (0.1046 inch thick) steel sheets, 
which cost $0.70 per square foot (including any required cuts or bends).

●  The base is to be made from a 10-gauge (0.1345 inch thick) steel sheet, which costs $0.90 
per square foot.

●  Lids cost approximately $50.00 each, regardless of dimensions.

●  Welding costs approximately $0.18 per foot for material and labor combined.

  Give justification of any further assumptions or simplifications made of the details of  
construction.

3. Describe how any of your assumptions or simplifications may affect the final result.

4.  If you were hired as a consultant on this investigation, what would your conclusions be? 
Would you recommend altering the design of the Dumpster? If so, describe the savings that 
would result.

APPLIED PROJECT DESIGNING A DUMPSTER

The Taylor polynomial approximation to functions of one variable that we discussed in 
Chapter 11 can be extended to functions of two or more variables. Here we investigate qua-
dratic approximations to functions of two variables and use them to give insight into the Second 
Derivatives Test for classifying critical points.

In Section 14.4 we discussed the linearization of a function f  of two variables at a point sa, bd:

Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

Recall that the graph of L is the tangent plane to the surface z − f sx, yd at sa, b, f sa, bdd and the 
corresponding linear approximation is f sx, yd < Lsx, yd. The linearization L is also called the 
first-degree Taylor polynomial of f  at sa, bd.

DISCOVERY PROJECT QUADRATIC APPROXIMATIONS AND CRITICAL POINTS
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In Example 14.7.6 we maximized a volume function V − xyz subject to the constraint 
2xz 1 2yz 1 xy − 12, which expressed the side condition that the surface area was 
12 m2. In this section we present Lagrange’s method for maximizing or minimizing a 
general function f sx, y, zd subject to a constraint (or side condition) of the form 
tsx, y, zd − k.

It’s easier to explain the geometric basis of Lagrange’s method for functions of two 
variables. So we start by trying to find the extreme values of f sx, yd subject to a con-
straint of the form tsx, yd − k. In other words, we seek the extreme values of f sx, yd 
when the point sx, yd is restricted to lie on the level curve tsx, yd − k. Figure 1 shows this 
curve together with several level curves of f . These have the equations f sx, yd − c, 
where c − 7, 8, 9, 10, 11. To maximize f sx, yd subject to tsx, yd − k is to find the largest 
value of c such that the level curve f sx, yd − c intersects tsx, yd − k. It appears from 
Figure 1 that this happens when these curves just touch each other, that is, when they 
have a common tangent line. (Otherwise, the value of c could be increased further.) This 

f(x, y)=11
f(x, y)=10
f(x, y)=9
f(x, y)=8
f(x, y)=7

x

y

0

g(x, y)=k

FIGURE 1

1.  If f  has continuous second-order partial derivatives at sa, bd, then the second-degree  
Taylor polynomial of f  at sa, bd is

 Qsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

 1 12 fxxsa, bdsx 2 ad2 1 fx ysa, bdsx 2 adsy 2 bd 1 1
2 fyysa, bdsy 2 bd2

  and the approximation f sx, yd < Qsx, yd is called the quadratic approximation to f  at  
sa, bd. Verify that Q has the same first- and second-order partial derivatives as f  at sa, bd.

2. (a)  Find the first- and second-degree Taylor polynomials L and Q of f sx, yd − e2x22y2
  

at (0, 0).
  (b) Graph f , L, and Q. Comment on how well L and Q approximate f.

3. (a)  Find the first- and second-degree Taylor polynomials L and Q for f sx, yd − xe y  
at (1, 0).

 (b) Compare the values of L, Q, and f  at (0.9, 0.1).
 (c) Graph f , L, and Q. Comment on how well L and Q approximate f.

4.  In this problem we analyze the behavior of the polynomial f sx, yd − ax 2 1 bxy 1 cy 2  
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.

 (a) By completing the square, show that if a ± 0, then

f sx, yd − ax 2 1 bxy 1 cy 2 − aFSx 1
b
2a

 yD2

1 S 4ac 2 b2

4a 2 Dy 2G
 (b)  Let D − 4ac 2 b2. Show that if D . 0 and a . 0, then f  has a local minimum  

at (0, 0).
 (c) Show that if D . 0 and a , 0, then f  has a local maximum at (0, 0).
 (d) Show that if D , 0, then (0, 0) is a saddle point.

5. (a)  Suppose f  is any function with continuous second-order partial derivatives such that 
f s0, 0d − 0 and (0, 0) is a critical point of f. Write an expression for the second- 
degree Taylor polynomial, Q, of f  at (0, 0).

 (b) What can you conclude about Q from Problem 4?
 (c)  In view of the quadratic approximation f sx, yd < Qsx, yd, what does part (b) suggest  

about f ?

;

;

TEC Visual 14.8 animates Figure 1 for 
both level curves and level surfaces.
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and so "2 − 29
4 , " − 6s29 y2. Then x − 72ys29 , y − 65ys29 , and, from (20), 

z − 1 2 x 1 y − 1 6 7ys29 . The corresponding values of f  are

7
2

s29 
1 2S6

5

s29 D 1 3S1 6
7

s29 D − 3 6 s29 

Therefore the maximum value of f  on the given curve is 3 1 s29 . 

 1.  Pictured are a contour map of f  and a curve with equation 
tsx, yd − 8. Estimate the maximum and minimum values  
of f  subject to the constraint that tsx, yd − 8. Explain your 
reasoning.

  

y

x0

70
60

50
40

30
20
10

g(x, y)=8

 2. (a)  Use a graphing calculator or computer to graph the 
circle x 2 1 y 2 − 1. On the same screen, graph several 
curves of the form x 2 1 y − c until you find two that 
just touch the circle. What is the significance of the 
values of c for these two curves?

 (b)  Use Lagrange multipliers to find the extreme values of 
f sx, yd − x 2 1 y subject to the constraint x 2 1 y 2 − 1. 
Compare your answers with those in part (a).

 3–14 Each of these extreme value problems has a solution with 
both a maximum value and a minimum value. Use Lagrange 
multipliers to find the extreme values of the function subject to 
the given constraint.

 3. f sx, yd − x 2 2 y 2;  x 2 1 y 2 − 1

 4. f sx, yd − 3x 1 y;  x 2 1 y 2 − 10

 5. f sx, yd − xy;  4x 2 1 y 2 − 8

 6. f sx, yd − xe y;  x 2 1 y 2 − 2

 7. f sx, y, zd − 2x 1 2y 1 z;  x 2 1 y 2 1 z 2 − 9

 8. f sx, y, zd − exyz;  2x 2 1 y 2 1 z 2 − 24

 9. f sx, y, zd − xy 2z;  x 2 1 y 2 1 z2 − 4

 10.  f sx, y, zd − lnsx2 1 1d 1 lnsy 2 1 1d 1 lnsz 2 1 1d;  
x 2 1 y 2 1 z2 − 12

;

 11. f sx, y, zd − x 2 1 y 2 1 z2;  x 4 1 y 4 1 z4 − 1

 12. f sx, y, zd − x 4 1 y 4 1 z4;  x 2 1 y 2 1 z2 − 1

 13. f sx, y, z, td − x 1 y 1 z 1 t;  x 2 1 y 2 1 z2 1 t 2 − 1

 14. f sx1, x2, . . . , xn d − x1 1 x2 1 ∙ ∙ ∙ 1 xn ;
  x 2

1 1 x 2
2 1 ∙ ∙ ∙ 1 x 2

n − 1

 15.  The method of Lagrange multipliers assumes that the 
extreme values exist, but that is not always the case. 
Show that the problem of finding the minimum value of 
f sx, yd − x 2 1 y 2 subject to the constraint xy − 1 can be 
solved using Lagrange multipliers, but f  does not have a 
maximum value with that constraint.

 16.  Find the minimum value of f sx, y, zd − x 2 1 2y 2 1 3z2

subject to the constraint x 1 2y 1 3z − 10. Show that f  
has no maximum value with this constraint.

 17–20 Find the extreme values of f  subject to both constraints.

 17. f sx, y, zd − x 1 y 1 z;  x 2 1 z 2 − 2,  x 1 y − 1

 18. f sx, y, zd − z;  x 2 1 y 2 − z 2,  x 1 y 1 z − 24

 19. f sx, y, zd − yz 1 xy;  xy − 1,  y 2 1 z2 − 1

 20. f sx, y, zd − x 2 1 y 2 1 z 2;  x 2 y − 1,  y 2 2 z 2 − 1

 21–23 Find the extreme values of f  on the region described by 
the inequality.

 21. f sx, yd − x 2 1 y 2 1 4x 2 4y,  x 2 1 y 2 < 9

 22. f sx, yd − 2x 2 1 3y 2 2 4x 2 5,  x 2 1 y 2 < 16

 23. f sx, yd − e 2xy,  x 2 1 4y 2 < 1

 24.  Consider the problem of maximizing the function 
f sx, yd − 2x 1 3y subject to the constraint sx 1 sy − 5.

 (a)  Try using Lagrange multipliers to solve the problem.
 (b)  Does f s25, 0d give a larger value than the one in part (a)?
 (c)  Solve the problem by graphing the constraint equation 

and several level curves of f.
 (d)  Explain why the method of Lagrange multipliers fails to 

solve the problem.
 (e)  What is the significance of f s9, 4d?

;
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 41. Exercise 51 42. Exercise 52

 43. Exercise 55

 44.  Find the maximum and minimum volumes of a rectangular 
box whose surface area is 1500 cm2 and whose total edge 
length is 200 cm.

 45.  The plane x 1 y 1 2z − 2 intersects the paraboloid 
z − x 2 1 y 2 in an ellipse. Find the points on this ellipse  
that are nearest to and farthest from the origin.

 46.   The plane 4x 2 3y 1 8z − 5 intersects the cone 
z2 − x 2 1 y 2 in an ellipse.

 (a)  Graph the cone and the plane, and observe the elliptical 
intersection.

 (b)  Use Lagrange multipliers to find the highest and lowest 
points on the ellipse.

 47 –48 Find the maximum and minimum values of f  subject to 
the given constraints. Use a computer algebra system to solve  
the system of equations that arises in using Lagrange multipliers. 
(If your CAS finds only one solution, you may need to use addi-
tional commands.)

 47. f sx, y, zd − ye x2z;  9x 2 1 4y 2 1 36z2 − 36, xy 1 yz − 1

 48. f sx, y, zd − x 1 y 1 z;  x 2 2 y 2 − z, x 2 1 z2 − 4

 49.  (a)  Find the maximum value of 

f sx1, x2, . . . , xn d − sn x1 x2 ∙ ∙ ∙ xn
   

   given that x1, x2, . . . , xn are positive numbers and 
x1 1 x2 1 ∙ ∙ ∙ 1 xn − c, where c is a constant.

 (b)  Deduce from part (a) that if x1, x2, . . . , xn are positive 
numbers, then

sn x1 x2 ∙ ∙ ∙ xn
 <

x1 1 x2 1 ∙ ∙ ∙ 1 xn

n

   This inequality says that the geometric mean of n num-
bers is no larger than the arithmetic mean of the  
numbers. Under what circumstances are these two 
means equal?

 50. (a)   Maximize o n
i−1 xi yi subject to the constraints 

o n
i−1 x 2

i − 1 and o n
i−1 yi

2 − 1.
 (b) Put

xi −
ai

so  a2
j

    and    yi −
bi

so  b 2
j

 
  to show that

o  aibi < so  a2
j  so  b 2

j

   for any numbers a1, . . . , an, b1, . . . , bn. This inequality 
is known as the Cauchy-Schwarz Inequality.

;

CAS

 25.  Consider the problem of minimizing the function 
f sx, yd − x on the curve y 2 1 x 4 2 x 3 − 0 (a piriform).

 (a)  Try using Lagrange multipliers to solve the problem.
 (b)  Show that the minimum value is f s0, 0d − 0 but the 

Lagrange condition = f s0, 0d − !=ts0, 0d is not satis-
fied for any value of !.

 (c)  Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

 26. (a)  If your computer algebra system plots implicitly defined 
curves, use it to estimate the minimum and maximum 
values of f sx, yd − x 3 1 y 3 1 3xy subject to the con-
straint sx 2 3d2 1 sy 2 3d2 − 9 by graphical methods.

 (b)  Solve the problem in part (a) with the aid of Lagrange  
multipliers. Use your CAS to solve the equations numer-
ically. Compare your answers with those in part (a).

 27.  The total production P of a certain product depends on 
the amount L of labor used and the amount K of capital 
investment. In Sections 14.1 and 14.3 we discussed how the 
Cobb-Douglas model P − bL"K 12" follows from certain 
economic assumptions, where b and " are positive constants 
and " , 1. If the cost of a unit of labor is m and the cost  
of a unit of capital is n, and the company can spend only  
p dollars as its total budget, then maximizing the produc-
tion P is subject to the constraint mL 1 nK − p. Show  
that the maximum production occurs when

L −
"p
m

    and    K −
s1 2 "dp

n

 28.  Referring to Exercise 27, we now suppose that the pro- 
duction is fixed at bL"K 12" − Q, where Q is a constant. 
What values of L and K minimize the cost function 
CsL, K d − mL 1 nK?

 29.  Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter p is a square.

 30.  Use Lagrange multipliers to prove that the triangle with  
maximum area that has a given perimeter p is equilateral. 
  Hint: Use Heron’s formula for the area:

A − ssss 2 xdss 2 ydss 2 zd

 where s − py2 and x, y, z are the lengths of the sides.

31–43 Use Lagrange multipliers to give an alternate solution to 
the indicated exercise in Section 14.7.

 31. Exercise 41 32. Exercise 42

 33. Exercise 43 34. Exercise 44

 35. Exercise 45 36. Exercise 46

 37. Exercise 47 38. Exercise 48

 39. Exercise 49 40. Exercise 50

CAS
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APPLIED PROJECT

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that 
first put men on the moon, are designed to use three stages in their ascent into space. A large first 
stage initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned 
to reduce the mass of the rocket. The smaller second and third stages function similarly in order 
to place the rocket’s payload into orbit about the earth. (With this design, at least two stages are 
required in order to reach the necessary velocities, and using three stages has proven to be a good 
compromise between cost and performance.) Our goal here is to determine the individual masses 
of the three stages, which are to be designed to minimize the total mass of the rocket while 
enabling it to reach a desired velocity.

For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting 
from the acceleration of the rocket vehicle has been modeled by

DV − 2c lnS1 2
s1 2 SdMr

P 1 Mr
D

where Mr is the mass of the rocket engine including initial fuel, P is the mass of the payload,  
S is a structural factor determined by the design of the rocket (specifically, it is the ratio of the 
mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and c is the 
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass A. Assume that outside forces 
are negligible and that c and S remain constant for each stage. If Mi is the mass of the ith stage,  
we can initially consider the rocket engine to have mass M1 and its payload to have mass 
M2 1 M3 1 A; the second and third stages can be handled similarly.

1. Show that the velocity attained after all three stages have been jettisoned is given by

vf − cFlnS M1 1 M2 1 M3 1 A
SM1 1 M2 1 M3 1 AD 1 lnS M2 1 M3 1 A

SM2 1 M3 1 AD 1 lnS M3 1 A
SM3 1 ADG

2.  We wish to minimize the total mass M − M1 1 M2 1 M3 of the rocket engine subject  
to the constraint that the desired velocity vf  from Problem 1 is attained. The method of 
Lagrange multipliers is appropriate here, but difficult to implement using the current expres-
sions. To simplify, we define variables Ni so that the constraint equation may be expressed as 
vf − csln N1 1 ln N2 1 ln N3 d. Since M is now difficult to express in terms of the Ni’s, we 
wish to use a simpler function that will be minimized at the same place as M. Show that

 
M1 1 M2 1 M3 1 A

M2 1 M3 1 A
−

s1 2 SdN1

1 2 SN1

 
M2 1 M3 1 A

M3 1 A
−

s1 2 SdN2

1 2 SN2

 
M3 1 A

A
−

s1 2 SdN3

1 2 SN3

 and conclude that

M 1 A
A

−
s1 2 Sd3N1N2N3

s1 2 SN1ds1 2 SN2 ds1 2 SN3 d

3.  Verify that lnssM 1 AdyAd is minimized at the same location as M; use Lagrange multipli-
ers and the results of Problem 2 to find expressions for the values of Ni where the minimum 
occurs subject to the constraint vf − csln N1 1 ln N2 1 ln N3 d. [Hint: Use properties of  
logarithms to help simplify the expressions.]
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980 CHAPTER 14  Partial Derivatives

4. Find an expression for the minimum value of M as a function of vf .

5.  If we want to put a three-stage rocket into orbit 100 miles above the earth’s surface, a final 
velocity of approximately 17,500 miyh is required. Suppose that each stage is built with a 
structural factor S − 0.2 and an exhaust speed of c − 6000 miyh.

  (a) Find the minimum total mass M of the rocket engines as a function of A.
  (b)  Find the mass of each individual stage as a function of A. (They are not equally sized!)

6.  The same rocket would require a final velocity of approximately 24,700 miyh in order to 
escape earth’s gravity. Find the mass of each individual stage that would minimize the total 
mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

At a hydroelectric generating station (once operated by the Katahdin Paper Company) in 
Millinocket, Maine, water is piped from a dam to the power station. The rate at which the water 
flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique) 
power function that gives the amount of electric power generated as a function of the water 
flow arriving at the turbine. The incoming water can be apportioned in different volumes to 
each turbine, so the goal is to determine how to distribute water among the turbines to give the 
maximum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models were 
determined for the power output of each turbine, along with the allowable flows of operation:

 KW1 − s218.89 1 0.1277Q1 2 4.08 ? 1025Q 2
1 ds170 2 1.6 ? 1026Q 2

T d

 KW2 − s224.51 1 0.1358Q2 2 4.69 ? 1025Q 2
2 ds170 2 1.6 ? 1026Q 2

T d

 KW3 − s227.02 1 0.1380Q3 2 3.84 ? 1025Q 2
3 ds170 2 1.6 ? 1026Q 2

T d

250 < Q1 < 1110,  250 < Q2 < 1110,  250 < Q3 < 1225

where

 Qi − flow through turbine i in cubic feet per second

 KWi − power generated by turbine i in kilowatts

 QT − total flow through the station in cubic feet per second

1.  If all three turbines are being used, we wish to determine the flow Qi to each turbine that will 
give the maximum total energy production. Our limitations are that the flows must sum to  
the total incoming flow and the given domain restrictions must be observed. Consequently, 
use Lagrange multipliers to find the values for the individual flows (as functions of QT)  
that maximize the total energy production KW1 1 KW2 1 KW3 subject to the constraints 
Q1 1 Q2 1 Q3 − QT and the domain restrictions on each Qi.

2. For which values of QT is your result valid?

3.  For an incoming flow of 2500 ft3ys, determine the distribution to the turbines and verify  
(by trying some nearby distributions) that your result is indeed a maximum.

4.  Until now we have assumed that all three turbines are operating; is it possible in some situa-
tions that more power could be produced by using only one turbine? Make a graph of the 
three power functions and use it to help decide if an incoming flow of 1000 ft3ys should be 

APPLIED PROJECT HYDRO-TURBINE OPTIMIZATION
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distributed to all three turbines or routed to just one. (If you determine that only one turbine 
should be used, which one would it be?) What if the flow is only 600 ft3ys?

5.  Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming 
flow is 1500 ft3ys, which two turbines would you recommend using? Use Lagrange multi-
pliers to determine how the flow should be distributed between the two turbines to maximize 
the energy produced. For this flow, is using two turbines more efficient than using all three?

6. If the incoming flow is 3400 ft3ys, what would you recommend to the station management?

CONCEPT CHECK Answers to the Concept Check can be found on the back endpapers.

14 REVIEW

 1. (a) What is a function of two variables?
 (b)  Describe three methods for visualizing a function of two 

variables.

 2.  What is a function of three variables? How can you visualize 
such a function?

 3. What does

lim
sx, yd l sa, bd 

 f sx, yd − L

 mean? How can you show that such a limit does not exist?

 4. (a) What does it mean to say that f  is continuous at sa, bd?
 (b)  If f  is continuous on R2, what can you say about its graph?

 5. (a)  Write expressions for the partial derivatives fxsa, bd and 
fysa, bd as limits.

 (b)  How do you interpret fxsa, bd and fysa, bd geometrically? 
How do you interpret them as rates of change?

 (c)  If f sx, yd is given by a formula, how do you calculate fx 
and fy ?

 6. What does Clairaut’s Theorem say?

 7.  How do you find a tangent plane to each of the following types 
of surfaces?

 (a) A graph of a function of two variables, z − f sx, yd
 (b)  A level surface of a function of three variables, 

Fsx, y, zd − k

 8.  Define the linearization of f  at sa, bd. What is the corre spond-
ing linear approximation? What is the geometric interpretation 
of the linear approximation?

 9. (a)  What does it mean to say that f  is differentiable at sa, bd?
 (b) How do you usually verify that f  is differentiable?

 10. If z − f sx, yd, what are the differentials dx, dy, and dz?

 11.  State the Chain Rule for the case where z − f sx, yd and x and y 
are functions of one variable. What if x and y are functions of 
two variables?

 12.  If z is defined implicitly as a function of x and y by an equation 
of the form Fsx, y, zd − 0, how do you find −zy−x and −zy−y?

 13. (a)  Write an expression as a limit for the directional derivative 
of f  at sx0, y0 d in the direction of a unit vector u − k a, b l.  
How do you interpret it as a rate? How do you interpret it 
geometrically?

 (b)  If f  is differentiable, write an expression for Du f sx0, y0 d in 
terms of fx and fy.

 14. (a)  Define the gradient vector = f  for a function f  of two or 
three variables.

 (b) Express Du f  in terms of = f .
 (c) Explain the geometric significance of the gradient.

 15. What do the following statements mean?
 (a) f  has a local maximum at sa, bd.
 (b) f  has an absolute maximum at sa, bd.
 (c) f  has a local minimum at sa, bd.
 (d) f  has an absolute minimum at sa, bd.
 (e) f  has a saddle point at sa, bd.

 16. (a)  If f  has a local maximum at sa, bd, what can you say about 
its partial derivatives at sa, bd?

 (b) What is a critical point of f ?

 17. State the Second Derivatives Test.

 18. (a) What is a closed set in R 2? What is a bounded set?
 (b)  State the Extreme Value Theorem for functions of two  

variables.
 (c)  How do you find the values that the Extreme Value  

Theorem guarantees?

 19.  Explain how the method of Lagrange multipliers works  
in finding the extreme values of f sx, y, zd subject to the 
constraint tsx, y, zd − k. What if there is a second constraint 
hsx, y, zd − c?
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EXERCISES

TRUE-FALSE QUIZ

 7.  If f  has a local minimum at sa, bd and f  is differentiable at 
sa, bd, then = f sa, bd − 0.

 8. If f  is a function, then

lim 
sx, yd l s2, 5d

  f sx, yd − f s2, 5d 

 9. If f sx, yd − ln y, then = f sx, yd − 1yy.

 10.  If s2, 1d is a critical point of f  and 

fxxs2, 1d fyys2, 1d , f fx ys2, 1dg 2

 then f  has a saddle point at s2, 1d.

 11. If f sx, yd − sin x 1 sin y, then 2s2 < Du f sx, yd < s2 .

 12.  If f sx, yd has two local maxima, then f  must have a local  
minimum.

 (b) Is fx s3, 2d positive or negative? Explain.
 (c) Which is greater, fy s2, 1d or fy s2, 2d? Explain.
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9–10 Evaluate the limit or show that it does not exist.

 9. lim
sx, yd l s1, 1d 

 
2xy

x 2 1 2y 2  10. lim
sx, yd l s0, 0d 

 
2xy

x 2 1 2y 2

 11.  A metal plate is situated in the xy-plane and occupies the  
rectangle 0 < x < 10, 0 < y < 8, where x and y are measured 
in meters. The temperature at the point sx, yd in the plate is 
T sx, yd, where T is measured in degrees Celsius. Temperatures 
at equally spaced points were measured and recorded in the 
table.

 (a)  Estimate the values of the partial derivatives Txs6, 4d  
and Tys6, 4d. What are the units?

  Determine whether the statement is true or false. If it is true, explain 
why. If it is false, explain why or give an example that disproves the 
statement.

 1. fysa, bd − lim
y l b

 
 f sa, yd 2 f sa, bd

y 2 b

 2.  There exists a function f  with continuous second-order  
partial derivatives such that fxsx, yd − x 1 y 2 and 
fysx, yd − x 2 y 2.

 3. fxy −
−2f

−x −y

 4. Dk f sx, y, zd − fzsx, y, zd

 5.  If f sx, yd l L as sx, yd l sa, bd along every straight line 
through sa, bd, then limsx, yd l sa, bd f sx, yd − L.

 6.  If fxsa, bd and fysa, bd both exist, then f  is differentiable  
at sa, bd.

1–2 Find and sketch the domain of the function.

 1. f sx, yd − lnsx 1 y 1 1d

 2. f sx, yd − s4 2 x 2 2 y 2 1 s1 2 x 2 

3–4 Sketch the graph of the function.

 3. f sx, yd − 1 2 y 2

 4. f sx, yd − x 2 1 sy 2 2d2

5–6 Sketch several level curves of the function.

 5. f sx, yd − s4x 2 1 y 2  

 6. f sx, yd − e x 1 y

 7.  Make a rough sketch of a contour map for the function whose 
graph is shown.

  

7et14rx07
05/12/10
MasterID: 01645

2x

z

2 y

 8.  The contour map of a function f  is shown.
 (a) Estimate the value of f s3, 2d.
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 25–29 Find equations of (a) the tangent plane and (b) the normal 
line to the given surface at the specified point.

 25. z − 3x 2 2 y 2 1 2x,  s1, 22, 1d

 26. z − e x cos y,  s0, 0, 1d

 27. x 2 1 2y 2 2 3z 2 − 3,  s2, 21, 1d

 28. xy 1 yz 1 zx − 3,  s1, 1, 1d

 29. sinsxyzd − x 1 2y 1 3z,  s2, 21, 0d

 30.  Use a computer to graph the surface z − x 2 1 y 4 and its  
tangent plane and normal line at s1, 1, 2d on the same screen. 
Choose the domain and viewpoint so that you get a good 
view of all three objects.

 31.  Find the points on the hyperboloid x 2 1 4y 2 2 z2 − 4 where 
the tangent plane is parallel to the plane 2x 1 2y 1 z − 5.

 32. Find du if u − lns1 1 se 2 t d.

 33.  Find the linear approximation of the function 
   f sx, y, zd − x 3sy 2 1 z 2  at the point (2, 3, 4) and use it  

to estimate the number s1.98d3ss3.01d 2 1 s3.97d 2 .

 34.  The two legs of a right triangle are measured as 5 m and 
12 m with a possible error in measurement of at most 0.2 cm 
in each. Use differentials to estimate the maximum error in 
the calculated value of (a) the area of the triangle and (b) the 
length of the hypotenuse.

 35.  If u − x 2y3 1 z4, where x − p 1 3p2, y − pe p, and 
z − p sin p, use the Chain Rule to find duydp.

 36.  If v − x 2 sin y 1 ye xy, where x − s 1 2t and y − st, use the 
Chain Rule to find −vy−s and −vy−t when s − 0 and t − 1.

 37.  Suppose z − f sx, yd, where x − tss, td, y − hss, td,  
ts1, 2d − 3, tss1, 2d − 21, tts1, 2d − 4, hs1, 2d − 6, 
hss1, 2d − 25, hts1, 2d − 10, fxs3, 6d − 7, and fys3, 6d − 8. 
Find −zy−s and −zy−t when s − 1 and t − 2.

 38.  Use a tree diagram to write out the Chain Rule for the case 
where w − f st, u, vd, t − ts p, q, r, sd, u − us p, q, r, sd, and 
v − vs p, q, r, sd are all differentiable functions.

 39. If z − y 1 f sx 2 2 y 2 d, where f  is differentiable, show that

y 
−z
−x

1 x 
−z
−y

− x

 40.  The length x of a side of a triangle is increasing at a rate of 
3 inys, the length y of another side is decreasing at a rate of 
2 inys, and the contained angle # is increasing at a rate of  
0.05 radianys. How fast is the area of the triangle changing 
when x − 40 in, y − 50 in, and # − $y6?

 41.  If z − f su, vd, where u − xy, v − yyx, and f  has continuous 
second partial derivatives, show that

x 2 
−2z
−x 2 2 y 2 

−2z
−y 2 − 24uv 

−2z
−u −v

1 2v 
−z
−v

;

 (b)  Estimate the value of Du T s6, 4d, where u − si 1 jdys2 . 
Interpret your result.

 (c) Estimate the value of Txys6, 4d.

  

7et14rtx11
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 12.  Find a linear approximation to the temperature function 
T sx, yd in Exercise 11 near the point (6, 4). Then use it to 
estimate the temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

 13. f sx, yd − s5y 3 1 2x 2yd8 14. tsu, vd −
u 1 2v
u 2 1 v 2

 15. F s", %d − " 2 lns" 2 1 % 2d 16. Gsx, y, zd − e xz sinsyyzd

 17. Ssu, v, wd − u arctan(vsw )

 18.  The speed of sound traveling through ocean water is a func-
tion of temperature, salinity, and pressure. It has been mod-
eled by the function

 C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3

        1 s1.34 2 0.01T dsS 2 35d 1 0.016D

  where C is the speed of sound (in meters per second), T is 
the temperature (in degrees Celsius), S is the salinity (the 
concentration of salts in parts per thousand, which means the 
number of grams of dissolved solids per 1000 g of water), and 
D is the depth below the ocean surface (in meters). Compute 
−Cy−T, −Cy−S, and −Cy−D when T − 108C, S − 35 parts 
per thousand, and D − 100 m. Explain the physical signifi-
cance of these partial derivatives.

19–22 Find all second partial derivatives of f .

 19. f sx, yd − 4x 3 2 xy 2 20. z − xe22y

 21. f sx, y, zd − x k y lz m 22. v − r cosss 1 2td

 23. If z − xy 1 xe yyx, show that x 
−z
−x

1 y 
−z
−y

− xy 1 z.

 24. If z − sinsx 1 sin td, show that

−z
−x

 
−2z

−x −t
−

−z
−t

 
−2z
−x 2
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984 CHAPTER 14  Partial Derivatives

 52. f sx, yd − x 3 2 6xy 1 8y 3

 53. f sx, yd − 3xy 2 x 2 y 2 xy 2

 54. f sx, yd − sx 2 1 yde yy2

55–56 Find the absolute maximum and minimum values of f  on 
the set D.

 55.  f sx, yd − 4xy 2 2 x 2 y 2 2 xy 3;  D is the closed triangular 
region in the xy-plane with vertices s0, 0d, s0, 6d, and s6, 0d

 56.  f sx, yd − e2x 22y 2sx 2 1 2y 2 d;  D is the disk x 2 1 y 2 < 4

 57.  Use a graph or level curves or both to estimate the local  
maximum and minimum values and saddle points of 
f sx, yd − x 3 2 3x 1 y 4 2 2y 2. Then use calculus to find  
these values precisely.

 58.  Use a graphing calculator or computer (or Newton’s method 
or a computer algebra system) to find the critical points of 
f sx, yd − 12 1 10y 2 2x 2 2 8xy 2 y 4 correct to three  
decimal places. Then classify the critical points and find  
the highest point on the graph.

 59–62 Use Lagrange multipliers to find the maximum and 
minimum values of f  subject to the given constraint(s).

 59. f sx, yd − x 2 y;  x 2 1 y 2 − 1

 60. f sx, yd −
1
x

1
1
y

;  
1
x 2 1

1
y 2 − 1

 61. f sx, y, zd − xyz;  x 2 1 y 2 1 z 2 − 3

 62. f sx, y, zd − x 2 1 2y 2 1 3z2;

  x 1 y 1 z − 1,  x 2 y 1 2z − 2

 63.  Find the points on the surface xy 2z3 − 2 that are closest to  
the origin.

 64.  A package in the shape of a rectangular box can be mailed by 
the US Postal Service if the sum of its length and girth (the 
perimeter of a cross-section perpendicular to the length) is at 
most 108 in. Find the dimensions of the package with largest 
volume that can be mailed.

 65.  A pentagon is formed by placing an isosceles triangle on a 
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter P, find the lengths of the sides of the pentagon that 
maximize the area of the pentagon.

   

=

=

¨

;

;

 42. If cossxyzd − 1 1 x 2y 2 1 z 2, find 
−z
−x

 and 
−z
−y

.

 43. Find the gradient of the function f sx, y, zd − x 2e yz 2
.

 44. (a) When is the directional derivative of f  a maximum?
 (b) When is it a minimum?
 (c) When is it 0?
 (d) When is it half of its maximum value?

 45–46 Find the directional derivative of f  at the given point in 
the indicated direction.

 45.  f sx, yd − x 2e2y,  s22, 0d,  
in the direction toward the point s2, 23d

 46.  f sx, y, zd − x 2 y 1 xs1 1 z ,  s1, 2, 3d,  
in the direction of v − 2 i 1 j 2 2k

 47.  Find the maximum rate of change of f sx, yd − x 2 y 1 sy   
at the point s2, 1d. In which direction does it occur?

 48.  Find the direction in which f sx, y, zd − ze x y increases most 
rapidly at the point s0, 1, 2d. What is the maximum rate of 
increase?

 49.  The contour map shows wind speed in knots during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the value 
of the directional derivative of the wind speed at Homestead, 
Florida, in the direction of the eye of the hurricane.
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 50.  Find parametric equations of the tangent line at the point 
s22, 2, 4d to the curve of intersection of the surface 
z − 2x 2 2 y 2 and the plane z − 4.

 51–54 Find the local maximum and minimum values and saddle 
points of the function. If you have three-dimensional graphing 
software, graph the function with a domain and viewpoint that 
reveal all the important aspects of the function.

 51. f sx, yd − x 2 2 xy 1 y 2 1 9x 2 6y 1 10
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