Formulas

Distance between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) :

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

The distance from a point (x_1, y_1, z_1) to the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Scalar projection of \mathbf{v} onto \mathbf{u} :

$$\mathrm{comp}_{\mathbf{u}}(\mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|}$$

Vector projection of **v** onto **u**:

$$\mathrm{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|^2} \mathbf{u}$$

Vector equation of a line:

$$\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}$$

Vector equation of a plane:

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_0) = 0$$

Arc Length Formula from t = a to t = b:

$$L = \int_{a}^{b} |\mathbf{r}'(t)| dt$$

Arc Length Function for $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ starting at t = a:

$$s(t) = \int_{a}^{t} |\mathbf{r}'(u)| du = \int_{a}^{t} \sqrt{\left(\frac{df}{du}\right)^{2} + \left(\frac{dg}{du}\right)^{2} + \left(\frac{dh}{du}\right)^{2}} du$$

Unit tangent vector for $\mathbf{r}(t)$:

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

Implicit Differentiation for F(x, y, z(x, y)) = 0:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} \qquad \qquad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

Gradient of f(x, y, z):

$$\nabla f(x, y, z) = \langle f_x, f_y, f_z \rangle$$

The directional derivative of f in the direction of \mathbf{u} :

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$$

The tangent plane to the surface z = f(x, y) at the point (x_0, y_0, z_0) is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$