# Math 164: Multidimensional Calculus 

Midterm Exam 2 Solutions

April 3, 2008

Name (please print legibly): $\qquad$
University ID Number: $\qquad$

Please check the box of your instructor:

|  | Thomas Tucker | MWF | $1000-1050$ |
| :--- | :--- | :--- | :--- |
|  | Andrew Ledoan | MWF | $0900-0950$ |

- Calculators, cell phones, iPods, and other electronics are not allowed on this exam.
- Please show all your work. You may use the backs of pages if necessary. A correct answer with no work shown will not receive full credit. Please label and circle your final answers.
- You are responsible for checking that this exam has all 8 pages. Please tell us immediately if your exam is missing a page. Missing pages will not contribute to your total score.

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 15 |  |
| 2 | 15 |  |
| 3 | 12 |  |
| 4 | 12 |  |
| 5 | 15 |  |
| 6 | 16 |  |
| 7 | 15 |  |
| Total: | 100 |  |

1. (15 points) Find the maximum and minimum values of the function $f(x, y)=3 x+3 y+5$ on the ellipsoid $x^{2}+2 y^{2}=24$.

## Solution.

Using the technique of Lagrange multipliers we find that if $f$ has a max or min at $(x, y)$, then there is a real number $\lambda$ such that

$$
\begin{align*}
& 3=\lambda 2 x \\
& 3=\lambda 4 y . \tag{1}
\end{align*}
$$

This means $\lambda 4 y=\lambda 2 x$. Since $\lambda \neq 0$ (otherwise, (1) would not hold), this becomes

$$
x=2 y .
$$

Plugging $x=2 y$ into $x^{2}+2 y^{2}=24$, we obtain

$$
4 y^{2}+2 y^{2}=24
$$

so $y= \pm 2$. When $x=-2$, we have $y=-4$, so

$$
f(x, y)=3(-2)+3(-4)+5=-13 .
$$

When $x=2$, we have $y=4$, so

$$
f(x, y)=3(2)+3(4)+5=23 .
$$

Thus,

$$
23 \text { is the maximum }
$$

and

$$
-13 \text { is the minimum }
$$

of $f(x, y)$ on this ellipsoid.
2. ( 15 points) Find the points(s) on the sphere $x^{2}+y^{2}+z^{2}=9$ on which the tangent plane is parallel to the plane $x+2 y+2 z=11$.
Solution. Let $S$ be the surface given by $F(x, y, z)=x^{2}+y^{2}+z^{2}$. Then $F_{X}(x, y, z)=2 x, F_{y}(x, y, z)=$ $2 x$, and $F_{z}(x, y, z)=2 z$. Suppose that $\left(x_{0}, y_{0}, z_{0}\right)$ lies on $S$. Then

$$
2 x_{0} \mathbf{i}+2 y_{0} \mathbf{j}+2 z_{0} \mathbf{k}=k \mathbf{i}+2 k \mathbf{j}+2 k \mathbf{k} .
$$

(Since the two planes are parallel, the normal vector of one plane is a scalar multiple of the other.) Thus $x_{0}=k / 2, y_{0}=k$, and $z_{0}=k$. Thus $x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=9$ implies that $(k / 2)^{2}+k^{2}+k^{2}=9$, or $9 k^{2} / 4=9$, or $k^{2}=4$. This gives $k= \pm 2$. Hence the required points are $( \pm 1, \pm 2, \pm 2)$.
3. (12 points) Evaluate $\iint_{D} x e^{x^{3}} d A$, where $D=\{(x, y) \mid 0 \leq y \leq 1, y \leq x \leq 1\}$.

Solution. Write

$$
\begin{aligned}
\iint_{D} x e^{x^{3}} d A & =\int_{0}^{1} \int_{0}^{x} x e^{x^{3}} d y d x \\
& =\int_{0}^{1}\left[y x e^{x^{3}}\right]_{y=0}^{y=x} d x \\
& =\int_{0}^{1} x^{2} e^{x^{3}} d x \\
& =\left[\frac{e^{x^{3}}}{3}\right]_{x=0}^{x=1} \\
& =\frac{e}{3}-\frac{1}{3} \\
& =\frac{1}{3}(e-1) .
\end{aligned}
$$

4. (12 points) Evaluate $\iint_{R} x \cos (x y) d A$, where $R=\{(x, y) \mid 0 \leq x \leq \pi, 1 \leq y \leq 2\}$.

Solution. Write

$$
\begin{aligned}
\iint_{R} x \cos (x y) d A & =\int_{0}^{\pi} \int_{1}^{2} x \cos (x y) d y d x \\
& =\int_{0}^{\pi} x \int_{1}^{2} \cos (x y) d y d x \\
& =\int_{0}^{\pi} x\left[\frac{1}{x} \sin (x y)\right]_{y=1}^{y=2} d x \\
& =\int_{0}^{\pi}[\sin (x y)]_{y=1}^{y=2} d x \\
& =\int_{0}^{\pi}[\sin (2 x)-\sin x] d x \\
& =\left[-\frac{1}{2} \cos (2 x)+\cos x\right]_{0}^{\pi} \\
& =\left[-\frac{1}{2} \cos (2 x)+\cos x\right]_{0}^{\pi} \\
& =\frac{1}{2}-1+\frac{1}{2}-1 \\
& =-2
\end{aligned}
$$

5. (15 points) Find the maximum rate of change of the function $f(x, y)=x^{2} e^{-y}$ at the point $(2,0)$ and the direction in which it occurs.
Solution. Recall that the maximum rate of change of a function $f$ at a point $(a, b)$ is simply $|\nabla f(a, b)|$ and that the direction in which this is obtained is simply the direction of $\nabla f(a, b)$.

In this case, we have $\nabla f=\left\langle 2 x e^{-y},-x^{2} e^{-y}\right\rangle$, so

$$
\nabla f(2,0)=\langle 4,-4\rangle .
$$

Thus, the maximum rate of change is

$$
|\langle 4,-4\rangle|=\sqrt{4^{2}+4^{2}}=\sqrt{32}=4 \sqrt{2}
$$

and the direction in which it occurs is

$$
\frac{1}{2 \sqrt{2}}\langle 4,-4\rangle=\left\langle\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\rangle .
$$

6. (16 points) Find and classify, as local maximum, local minimum, or saddle point, the critical points of the function $f(x, y)=x^{3}-3 x+2 y^{3}-24 y^{2}$.
Solution. We have $f_{x}(x, y)=3 x^{2}-3$ and $f_{x}(x, y)=6 y^{2}-48 y$. Note that $f_{x}(x, y)=0$ if and only if $3 x^{2}-3=0$ if and only if $3(x+1)\left(x-10\right.$ if and only if $x=-1$ or $x=1$. Similarly, $f_{y}(x, y)=0$ if and only if $6 y(y-8)=0$ if and only if $y=0$ or $y=8$. Thus the four critical poits are $(1,8),(1,0)$, $(-1,8)$, and $(-1,0)$.

According to the Second Derivative Test, the discriminant is

$$
D=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y) .
$$

However

$$
f_{x x}(x, y)=6 x, \quad f_{y y}(x, y)=12 y-48, \quad f_{x y}(x, y)=0 .
$$

Hence at $(1,8)$ we have $D>0 f_{x x}>0$, so that $(1,8)$ is a local minimum. At $(1,0)$ we have $D<0$ and $f_{x x}(x, y)>0$, so that $(1,0)$ is a saddle point. (See Note 1 and Note 2 on pages 954 and 955 .) At $(-1,8)$ we have $D<0$ and $f_{x x}(x, y)<0$, so that $(-1,8)$ is a saddle point. Lastly, at $(-1,0)$ we have $D>0$ and $f_{x x}(x, y)<0$, so that $(-1,0)$ is a local maximum.

## 7. (15 points)

(a) (7 points) Let $w=e^{x+y}$ where $x=\sin t, y=t u^{2}$. Find the numerical values of $\partial w / \partial t$ and $\partial w / \partial u$ when $(t, u)=(\pi, 2)$.
Solution. Using the chain rule, we have

$$
\begin{equation*}
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}=e^{\sin t+t u^{2}} \cos t+e^{\sin t+t u^{2}} u^{2} \tag{2}
\end{equation*}
$$

Pluggin in $t=\pi$ and $u=2$, we obtain

$$
\frac{\partial w}{\partial t}(\pi, 2)=-e^{4 \pi}+4 e^{4 \pi}=3 e^{4 \pi}
$$

Similarly, we have

$$
\begin{equation*}
\frac{\partial w}{\partial u}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial u}=e^{\sin t+t u^{2}}(0)+e^{\sin t+t u^{2}} 2 t u \tag{3}
\end{equation*}
$$

Pluggin in $t=\pi$ and $u=2$, we obtain

$$
\frac{\partial w}{\partial u}(\pi, 2)=4 \pi e^{4 \pi}
$$

(b) ( 8 points) The width of a rectangle is increasing at a rate of $2 \mathrm{in} / \mathrm{s}$., while its length is decreasing at a rate of $1 \mathrm{in} / \mathrm{s}$. At what rate is the area of the rectangle changing when the length is 5 in and and width is 3 in .

## Solution.

Since the formual for area is $A(\ell, w)=\ell w$, we have

$$
\begin{align*}
\frac{\mathrm{d} A}{\mathrm{~d} t} & =\frac{\mathrm{d} A}{\mathrm{~d} w} \frac{\mathrm{~d} w}{\mathrm{~d} t}+\frac{\mathrm{d} A}{\mathrm{~d} \ell} \frac{\mathrm{~d} \ell}{\mathrm{~d} t} \\
& =\ell \frac{\mathrm{d} w}{\mathrm{~d} t}+w \frac{\mathrm{~d} \ell}{\mathrm{~d} t}  \tag{4}\\
& =5(2)+3(-1)=7 \text { square inches per second. }
\end{align*}
$$

