Math 164: Multidimensional Calculus

Midterm Exam 2
April 3, 2008

Name (please print legibly): \qquad
University ID Number: \qquad

Please check the box of your instructor:

	Thomas Tucker	MWF	$1000-1050$
	Andrew Ledoan	MWF	$0900-0950$

- Calculators, cell phones, iPods, and other electronics are not allowed on this exam.
- Please show all your work. You may use the backs of pages if necessary. A correct answer with no work shown will not receive full credit. Please label and circle your final answers.
- You are responsible for checking that this exam has all 8 pages. Please tell us immediately if your exam is missing a page. Missing pages will not contribute to your total score.

Question	Points	Score
1	15	
2	15	
3	12	
4	12	
5	15	
6	16	
7	15	
Total:	100	

1. (15 points) Find the maximum and minimum values of the function $f(x, y)=3 x+3 y+5$ on the ellipsoid $x^{2}+2 y^{2}=24$.
2. ($\mathbf{1 5}$ points) Find the point on the sphere $x^{2}+y^{2}+z^{2}=9$ on which the tangent plane is parallel to the plane $x+2 y+2 z=11$.
3. (12 points) Evaluate $\iint_{D} x e^{x^{3}} d A$, where $D=\{(x, y) \mid 0 \leq y \leq 1, y \leq x \leq 1\}$.
4. (12 points) Evaluate $\iint_{R} x \cos (x y) d A$, where $R=\{(x, y) \mid 0 \leq x \leq \pi, 1 \leq y \leq 2\}$.
5. (15 points) Find the maximum rate of change of the function $f(x, y)=x^{2} e^{-y}$ at the point $(2,0)$ and the direction in which it occurs.
6. (16 points) Find and classify, as local maximum, local minimum, or saddle point, the critical points of the function $f(x, y)=x^{3}-3 x+2 y^{3}-24 y^{2}$.

7. (15 points)

(a) (7 points) Let $w=e^{x+y}$ where $x=\sin t, y=t u^{2}$. Find the numerical values of $\partial w / \partial t$ and $\partial w / \partial u$ when $(t, u)=(\pi, 2)$.
(b) (8 points) The width of a rectangle is increasing at a rate of $2 \mathrm{in} / \mathrm{s}$., while its length is decreasing at a rate of $1 \mathrm{in} / \mathrm{s}$. At what rate is the area of the rectangle changing when the length is 5 in and and width is 3 in .

