Math 164: Multidimensional Calculus

Final Exam Solutions
May 5, 2008

Name (please print legibly): \qquad
University ID Number: \qquad

Please check the box of your instructor:

	Thomas Tucker	MWF	$1000-1050$
	Andrew Ledoan	MWF	$0900-0950$

- Calculators, cell phones, iPods, and other electronics are not allowed on this exam.
- Please show all your work. You may use the backs of pages if necessary. A correct answer with no work shown will not receive full credit. Please label and circle your final answers.
- You are responsible for checking that this exam has all 17 pages. Please tell us immediately if your exam is missing a page. Missing pages will not contribute to your total score.

Question	Points	Score
1	20	
2	10	
3	24	
4	12	
5	12	
6	12	
7	12	
8	10	
9	12	
10	10	
11	12	
12	10	
13	12	
14	20	
15	12	
Total:	200	

1. (20 points)

(a) (10 points) Write an equation of the plane tangent to the ellipsoid $2 x^{2}+4 y^{2}+z^{2}=45$ at the point $(2,-3,-1)$.

Solution. Write $F(x, y, z)=2 x^{2}+4 y^{2}+z^{2}-45$. THen $F(x, y, z)=0$ is an equation of the ellipsoid. By Equation 18 in Section 14.6, page 948, a vector normal to the ellipsoid surface at (x, y, z) is $\nabla F(x, y, z)=4 x \mathbf{i}+8 y \mathbf{j}+2 z \mathbf{k}$, so $\nabla F(x,-3,-1)=8 \mathbf{i}-24 \mathbf{j}-2 \mathbf{k}$ is normal to the ellipsoid at $(2,-3,-1)$. Equation 19 in Section 14.6, page 948, then gives the answer in the form $8(x-2)-24(y-3)-2(z+1)=0$ or $4 x-12 y-z=45$.
(b) (10 points) Find all the points on the ellipsoid $2 x^{2}+4 y^{2}+z^{2}=45$ at which the tangent plane is parallel to the plane $4 y+z=8$.

Solution. We find all points (x, y, z) that satisfy $\langle 4 x, 8 y, 2 z\rangle=a\langle 0,4,1\rangle$, for some constant a. Since (x, y, z), with $x=0, y=a / 2$, and $z=a / 2$, lies on the ellipsiod, we substitute these into $2 x^{2}+4 y^{2}+z^{2}=45$ to find that $a= \pm 6$. Hence the required points are $(0,3,3)$ and $(0,-3,-3)$.
2. (10 points) Locate and classify the critical points of the function $f(x, y)=3 x-x^{3}-3 x y^{2}$.

Solution. f is a polynomial, so all its partial derivatives exist and are continuous everywhere. Now $f_{x}(x, y)=3-3 x^{2}-3 y^{2}=0$ and $f_{y}(x, y)=-6 x y=0$ give us the four critical points $(1,0),(-1,0)$, $(0,1)$, and $(0,-1)$. We find that $f_{x x}(x, y)=-6 x, f_{x y}(x, y)=-6 y$, and $f_{y y}(x, y)=-6 x$. Applying Theorem 3 in Section 14.7, page 954 , we find that at $(1,0)$ there is a local maximum, at $(-1,0)$ there is a local minimum, and at $(0,1)$ and $(0,-1)$ there are saddle points.

3. (24 points)

(a) (14 points) Show that $\mathbf{F}(x, y, z)=\left(2 x y^{3}+z^{2}\right) \mathbf{i}+\left(3 x^{2} y^{2}+2 y z\right) \mathbf{j}+\left(y^{2}+2 x z\right) \mathbf{k}$ is a conservative vector field. Then find a potential function f such that $\mathbf{F}=\nabla f$.

Solution. curl $\mathbf{F}=(2 y-2 y) \mathbf{i}+(2 z-2 z) \mathbf{j}+\left(6 x y^{2}-6 x y^{2}\right) \mathbf{k}=b f 0$ and the domain of \mathbf{F} is \mathbb{R}^{3}, so \mathbf{F} is conservative, by Theorem 4 in Section 16.5, page 1092. Thus there is a potential function f such that $\nabla f=\mathbf{F}$. Then $f_{x}(x, y, z)=2 x y^{3}+z^{2}$ implies $f(x, y, z)=x^{2} y^{3}+x z^{2}+g(y, z)$ and $f_{y}(x, y, z)=3 x^{2} y^{2}+g_{y}(y, z)$. But $f_{y}(x, y, z)=3 x^{2} y^{2}+2 y z$ so $g(y, z)=y^{2} z+h(z)$. Then $f(x, y, z)=x^{2} y^{3}+x z^{2}+h(z)$ implies $f_{z}(x, y, z)=2 x z+y^{2}+h^{\prime}(z)$. But $f_{z}(x, y, z)=y^{2}+2 x z$. So $h^{\prime}(z)=0$. Hence a potential function f for \mathbf{F} is $f(x, y, z)=x^{2} y^{3}+x z^{2}+y^{2} z+K$, where K is some constant.
(b) (10 points) Let C be the arc of the curve $y=x \sin x$ from $(0,0)$ to $(\pi, 0)$. Use the function f from part (a) to evaluate the integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Solution. Since \mathbf{F} is conservative and since curl $\mathbf{F}=0$, by part (a), we have $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$. We may also see this by evaluating the function f at the endoints - we obtain $0-0=0$ in this way (see Theorem 2 in Section 16.3, page 1074).
4. (12 points) Use Green's Theorem to evaluate the line integral

$$
\int_{C}\left(x y d x+x^{2} d y\right)
$$

where C is the triangle with vertices $(0,0),(1,0)$, and $(1,2)$.
Solution. Sketch a graph of the triangle C. Note that C is traversed counterclockwise and that C is comprised of the three line segments C_{1}, C_{2}, and C_{3} defined as follows. $C_{1}: 0 \leq x \leq 1, y=0$; $C_{2}: x=1,0 \leq y \leq 2 ; C_{3}: x=x, y=2 x$, and x ranges from $x=1$ to $x=0$. Using Green's Theorem, we find that

$$
\begin{aligned}
\int_{C}\left(x y d x+x^{2} d y\right) & =\iint_{D}\left[\frac{\partial}{\partial x}\left(x^{2}\right)-\frac{\partial}{\partial y}(x y)\right] d A \\
& =\iint_{D}(2 x-x) d A \\
& =\int_{0}^{1} \int_{0}^{2 \pi} x d y d x \\
& =\frac{2}{3}
\end{aligned}
$$

To verify Green's Theorem, we evaluate the line integral directly:

$$
\int_{C}\left(x y d x+x^{2} d y\right)=\int_{0}^{1} 0 d x+\int_{0}^{2}(0+1) d y+\int_{1}^{0}\left(2 x^{2}+2 x^{2}\right) d x=\frac{2}{3}
$$

5. (12 points) Let D be the lamina bounded by $x=0$ and $x=4-y^{2}$ and constant density function $\rho(x, y)=1$. Find the center of mass of D.

Solution. By symmetry of the lamina $D\left\{(x, y) \mid 0 \leq x \leq 4-y^{2},-2 \leq y \leq 2\right\}$, its center of mass is given by $(\bar{x}, \bar{y})=(\bar{x}, 0)$. We find

$$
\bar{x}=\frac{\iint_{D} x \rho(x, y) d A}{\iint_{D} \rho(x, y) d A}=\frac{\iint_{D} x d A}{\iint_{D} d A},
$$

where, by a short calculation,

$$
\iint_{D} d A=\int_{-2}^{2} \int_{0}^{4-y^{2}} x d x d y=\frac{256}{15}
$$

and that

$$
\iint_{D} d A=\int_{-2}^{2} \int_{0}^{4-y^{2}} d x d y=\frac{32}{3}
$$

so that $\bar{x}=\frac{8}{5}$.
6. (12 points) Find the area of the part of the surface $z=x^{2}+2 y$ that lies above the triangle with vertices $(0,0),(1,0)$, and $(1,2)$.

Solution. $z=f(x, y)=x^{2}+2 y$ with $0 \leq x \leq 1$ and $0 \leq y \leq 2 x$. Thus

$$
\begin{aligned}
A(S) & =\iint_{D} \sqrt{1+4 x^{2}+4} d A \\
& =\int_{0}^{1} \int_{0}^{2 x} \sqrt{5+4 x^{2}} d y d x \\
& =\int_{0}^{1} 2 x \sqrt{5+4 x^{2}} d x \\
& =\left[\frac{1}{6}\left(5+4 x^{2}\right)^{3 / 2}\right]_{0}^{1} \\
& =\frac{1}{6}(27-5 \sqrt{5})
\end{aligned}
$$

7. (12 points) Evaluate the surface integral

$$
\iint_{S}\left(x^{2} z+y^{2} z\right) d S
$$

where S is the part of the plane $z=4+x+y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
Solution. $z=f(x, y)=4+x+y$ with $0 \leq x^{2}+y^{2} \leq 4$. So $r_{\mathbf{x}} \times r_{\mathbf{y}}=-\mathbf{i}-\mathbf{j}+\mathbf{k}$. Then

$$
\begin{aligned}
\iint_{S}\left(x^{2} z+y^{2} z\right) d S & =\iint_{x^{2}+y^{2} \leq 4}\left(x^{2}+y^{2}\right)(4+x+y) \sqrt{3} d A \\
& =\int_{0}^{2} \int_{0}^{2 \pi} \sqrt{3} r^{3}(4+r \cos \theta+r \sin \theta) d \theta d r \\
& =\int_{0}^{2} 8 \pi \sqrt{3} r^{3} d r \\
& =32 \pi \sqrt{3}
\end{aligned}
$$

8. (10 points) Evaluate the flux integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+x y \mathbf{j}+z \mathbf{k}$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ below the plane $z=1$ with upward orientation.

Solution. We use Formula 9 on page 1117. Note that $z=f(x, y)=x^{2}+y^{2}, r_{\mathbf{x}} \times r_{\mathbf{y}}=-2 x \mathbf{i}-2 y \mathbf{j}+\mathbf{k}$ (because of upward orientation), and $\mathbf{F}(\mathbf{r}(x, y)) \cdot\left(r_{\mathbf{x}} \times r_{\mathbf{y}}\right)=-2 x^{3}-2 x y^{2}+x^{2}+y^{2}$. Then

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{D} \mathbf{F} \cdot\left(r_{\mathbf{x}} \times r_{\mathbf{y}}\right) d A \\
& =\iint_{x^{2}+y^{2} \leq 1}\left(-2 x^{3}-2 x y^{2}+x^{2}+y^{2}\right) d A \\
& =\int_{0}^{1}\left(-2 r^{3} \cos ^{3} \theta-2 r^{2} \cos \theta \sin ^{2} \theta+r^{2}\right) r d r d \theta \\
& =\int_{0}^{1} r^{3}(2 \pi) d r=\frac{\pi}{2}
\end{aligned}
$$

9. (12 points) Use the Divergence Theorem to calculate the flux integral

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

where S is the surface of the sphere of radius and $\mathbf{F}=x \mathbf{i}+e^{z} \mathbf{j}+3 z \mathbf{k}$.
Solution. Using $\operatorname{div} \mathbf{F}=$ 5, we find that

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{E} \operatorname{div} \mathbf{F} d V=5 \iint_{E} d V=5\left(\frac{4}{3} \pi \cdot 2^{3}\right)=\frac{160 \pi}{3}
$$

where E is the solid enclosed by the surface S.
10. (10 points) Find the volume of the region below the plane $x+2 y+3 z=6$ in the first octant.

Solution. Let V denote the volume of the region below the plane $x+2 y+3 z=6$ in the first octant. Let $z=f(x, y)=6-2 x-2 y$. Now, if $z=0$ then $D=\{(x, y) \mid 0 \leq x \leq 3,0 \leq y \leq 3-x\}$. We compute that

$$
V=\iint_{D} d A=\int_{0}^{3} \int_{0}^{3-x}(6-2 x-2 y) d y d x=\int_{0}^{3}\left(x^{2}-6 x+9\right) d x=9
$$

11. (12 points) Let D be the region defined by the inequalities $0 \leq x \leq 1$ and $\sqrt[3]{x} \leq y \leq 1$. Evaluate the integral

$$
\iint_{D} e^{y^{4}} d A
$$

Solution. We compute that

$$
\iint_{D} e^{y^{4}} d A=\int_{0}^{1} \int_{0}^{y^{3}} e^{y^{4}} d x d y=\int_{0}^{1} y^{3} e^{y^{4}} d y=\frac{e-1}{4}
$$

12. ($\mathbf{1 0}$ points) Find the length of the arc parametrized by

$$
\mathbf{r}(t)=\cos 2 t \mathbf{i}+\sin 2 t \mathbf{j}+3 t \mathbf{k}
$$

where $\pi \leq t \leq 4 \pi$.
Solution. Let s denote the arclength of the arc parametrized by $\mathbf{r}(t)=\cos 2 t \mathbf{i}+\sin 2 t \mathbf{j}+3 t \mathbf{k}$. We compute that

$$
s=\int_{\pi}^{5 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{\pi}^{5 \pi} \sqrt{5} d t=4 \pi \sqrt{5}
$$

13. (12 points)

(a) (6 points) Find a vector that is orthogonal to the vectors $\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $2 \mathbf{i}+3 \mathbf{j}$.

Solution. We compute that $\langle 1,1,1\rangle \times\langle 2,3,0\rangle=\langle-3,2,1\rangle$
(b) ($\mathbf{6}$ points) Find the area of the parallelogram spanned by the vectors $\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $2 \mathbf{i}+3 \mathbf{j}$.

Solution. It is $|\langle-3,2,1\rangle|=\sqrt{14}$ square units.

14. (20 points)

(a) (10 points) Find an equation for a plane containing the points $(1,0,2),(2,3,2)$, and $(1,2,5)$.

Solution. We compute the normal vector $\langle 1,3,0\rangle \times\langle 0,2,3\rangle=\langle 9,-3,2\rangle$, from which we get the plane $9(x-1)-3(y-0)+2(z-2)=0$, or $9 x-3 y+2 z=13$.
(b) (10 points) Find an equation of the tangent plane at the point $(4,-2,1)$ to the parametric surface S given by $\mathbf{r}(u, v)=v^{2} \mathbf{i}-u v \mathbf{j}+u^{2} \mathbf{k}$, where $0 \leq u \leq 3$ and $-3 \leq v \leq 3$.

Solution. We compute the normal vector $\langle 0,-v, 2 u\rangle \times\langle 2 v,-u, 0\rangle=\langle 2,8,8\rangle$, if $u=1$, and $v=2$. Hence, the tangent plane is given by the equation $2(x-4)+8(y+2)+8(z-1)=0$, or $x+4 y+4 z=0$.
15. (12 points) Find the maximum and minimum values of the function $F(x, y)=x y$ subject to the constraint $x^{2}+3 y^{2}=12$.

Solution. According to Lagrange's method, we solve the equation $\nabla f=\lambda \nabla g$, where λ is some positive constant. We have $y=2 \lambda x$ and $x=8 \lambda y$, from which we get that $\lambda= \pm \frac{1}{4}$. Then applying the $g(x, y)=x^{2}+4 y^{2}-24$. We obtain $x= \pm \sqrt{12}= \pm 2 \sqrt{3}$ and $y= \pm \sqrt{3}$. Substituting these coordinates into $F(x, y)$, we find that $F_{\max }=F(2 \sqrt{3}, \sqrt{3})=6=F(- \pm 2 \sqrt{3},-\sqrt{3})=6$ and $F_{\text {min }}=F(-2 \sqrt{3}, \sqrt{3})=6=F(2 \sqrt{3},-\sqrt{3})$.

