1. a) The function is continuous since the denominator is nonzero at $(0,0)$. Thus the limit is simply the value at $(0,0)$ which is $\frac{2}{\sqrt{4}}=1$.
b) Along the path $x=t, y=0$ the limit is $\lim _{t \rightarrow 0} \frac{0}{t^{4}}=0$, but along the path $x=t, y=t^{2}$ the limit is $\lim _{t \rightarrow 0} \frac{2 t^{4}}{2 t^{4}}=1$ so by the two-paths test the limit does not exist.
2. Solving for R gives $R=\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}\right)^{-1}$. Then $\frac{\partial R}{\partial R_{2}}=(-1) \cdot\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}\right)^{-2}$. $(-1) R_{2}^{-2}=\frac{R^{2}}{R_{2}^{2}}$. When $R_{1}=30 \mathrm{ohms}, R_{2}=45 \mathrm{ohms}, R_{3}=90$ ohms, we get $R=15 \mathrm{ohms}$ so $\frac{\partial R}{\partial R_{2}}=\frac{(15 \mathrm{ohm})^{2}}{(45 \mathrm{ohm})^{2}}=\frac{1}{9}$.
3. a) We have $f_{x}(x, y)=-y e^{-x y}$ and $f_{y}=-x e^{-x y}$, and these are both continuous functions since they are combinations of exponentials and polynomials (which are continuous).
b) The linearization is $L(x, y)=f(1,0)+(x-1) \cdot f_{x}(1,0)+(y-0) \cdot f_{y}(1,0)=1-y$.
c) We compute $L(1.03,0.02)=1-0.02=0.98$.
4. Note that $\nabla f(x, y)=\langle x, y\rangle$ so $\nabla f(1,1)=\langle 1,1\rangle$.
a) The direction of maximum increase is in the direction of ∇f hence is $\frac{\langle 1,1\rangle}{\sqrt{2}}$.
b) The direction of maximum increase is in the opposite direction of ∇f hence is $\frac{\langle 1,1\rangle}{\sqrt{2}}$.
c) The function will have zero change in all directions orthogonal to the gradient. There are two such directions in the plane: $\frac{\langle 1,-1\rangle}{\sqrt{2}}, \frac{\langle-1,1\rangle}{\sqrt{2}}$ (they are both clearly orthogonal to ∇f).
5. We first find all critical points: we compute $f_{x}=3 x^{2}-3 y$ and $f_{y}=24 y^{2}-3 x$ and set them both equal to zero. The first equation gives $y=x^{2}$, and plugging in to the other equation gives $24 x^{4}-3 x=0$ so $x=0$ or $x=\frac{1}{2}$. There are two critical points, $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}\right)$.
Then we compute $f_{x x}=6 x, f_{x y}=-3, f_{y y}=48 y$. So at $(0,0)$ we have $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=$ $(0)(0)-(-3)^{2}=-9$ so $(0,0)$ is a saddle point. At $\left(\frac{1}{2}, \frac{1}{2}\right)$ we have $D=(3)(24)-(-3)^{2}=63>0$ and $f_{x x}=3>0$, so $\left(\frac{1}{2}, \frac{1}{2}\right)$ is a local minimum.
6. For $f(x, y)=x y$ and $g(x, y)=\frac{x^{2}}{8}+\frac{y^{2}}{2}-1$ we want to minimize/maximize f subject to $g(x, y)=0$. We compute $\nabla f=\langle y, x\rangle$ and $\nabla g=\left\langle\frac{x}{4}, y\right\rangle$, so using the method of Lagrange multipliers yields the system $y=\lambda, \frac{x}{4} x=\lambda y, \frac{x^{2}}{8}+\frac{y^{2}}{2}-1=0$. We have $x=\lambda y$ and then the first equation gives $y=\lambda \frac{\lambda y}{4}$ so $y=0, \lambda=2$, or $\lambda=-2$. If $y=0$ then $x=0$ also but this fails the third equation. So $\lambda= \pm 2$ and $x= \pm 2 y$. In either case, the third equation gives $\frac{y^{2}}{2}+\frac{y^{2}}{2}-1=0$ so $y^{2}=1$ and thus $y= \pm 1$. We get four candidate points $(2,1),(2,-1),(-2,1)$, and $(-2,-1)$. Since $f(2,1)=f(-2,-1)=2$ and $f(-2,1)=f(2,-1)=-2$ the maximum is 2 and the minimum is -2 .
7. $V=\int_{0}^{1} \int_{0}^{2}\left(10+x^{2}+3 y^{2}\right) d y d x=\left.\int_{0}^{1}\left(10 y+x^{2} y+y^{3}\right)\right|_{y=0} ^{2} d x=\int_{0}^{1}\left(28+2 x^{2}\right) d x=28+\frac{2}{3}=\frac{86}{3}$.
