Answers to Math 164 Midterm 1, Fall 2014.

1. a) $\mathbf{a} \cdot \mathbf{b}=(0)(1)+(5)(1)+(-3)(1)=2$.
b) Scalar component is $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}=\frac{2}{\sqrt{0^{2}+5^{2}+(-3)^{2}}}=\frac{2}{\sqrt{34}}$.
c) Vector projection is $\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}=\frac{2}{34}(5 \mathbf{j}-3 \mathbf{k})$.
2. Direction vectors are $\langle 2,-1,3\rangle$ and $\langle 2,-1,3\rangle$ so they are parallel. For distance, choose points $A$ and $B$ on each line, and then compute the length of the component of $\mathbf{w}=A B$ that is orthogonal to the direction vector $\mathbf{v}$. Easy points are $(1,-1,0)$ and $(5,1,8)$ yielding $\mathbf{w}=\langle 4,2,8\rangle$. Then the orthogonal component is $\mathbf{w}-\frac{\mathbf{w} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\langle 4,2,8\rangle-\frac{30}{14}\langle 2,-1,3\rangle=\frac{1}{7}\langle-2,29,11\rangle$, and the length is $\frac{1}{7} \sqrt{(-2)^{2}+29^{2}+11^{2}}=\frac{\sqrt{966}}{7}=\sqrt{\frac{138}{7}}$.
3. a) Angle $\alpha$ is $\pi$ minus angle between normal vectors $\mathbf{v}=\langle 3,0,6\rangle$ and $\mathbf{w}=\langle 2,2,-1\rangle$. Angle between normal vectors has $\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{0}{3 \sqrt{45}}=0$, so $\theta=\frac{\pi}{2}$. Thus, angle is $\pi-\frac{\pi}{2}=\frac{\pi}{2}$.
b) Direction vector of line is $\mathbf{v} \times \mathbf{w}=\langle-12,15,6\rangle$. A point on both planes with $z=0$ is $(x, y, z)=\left(\frac{1}{3}, \frac{7}{6}, 0\right)$ so line is $\left(\frac{1}{3}-12 t, \frac{7}{6}+15 t, 6 t\right)$.
4. Velocity at time 0 is in direction of $\langle 2,1,1\rangle$ of magnitude 2 so $\mathbf{v}(0)=\frac{2}{\sqrt{6}}\langle 2,1,1\rangle$. Thus $\mathbf{v}(t)=\frac{2}{\sqrt{6}}\langle 2,1,1\rangle+\langle 2,1,1\rangle t$ by integrating $\mathbf{a}(t)$. Integrating again gives $\mathbf{r}(t)=\langle 1,-1,2\rangle+$ $\frac{2}{\sqrt{6}}\langle 2,1,1\rangle t+\frac{1}{2}\langle 2,1,1\rangle t^{2}$ since $\mathbf{r}(0)=\langle 1,-1,2\rangle$.
5. $\mathbf{r}^{\prime}(t)=\langle t \cos t, t \sin t\rangle$ so $\left\|\mathbf{r}^{\prime}(t)\right\|=|t|, \mathbf{T}(t)=\langle\cos t, \sin t\rangle, \mathbf{T}^{\prime}(t)=\langle-\sin t, \cos t\rangle,\left\|\mathbf{T}^{\prime}(t)\right\|=1$. So $\kappa(t)=\frac{1}{|t|}$.
6. a) Level surface is $\ln \left(x^{2}+y^{2}+z^{2}\right)=\ln (4)$, or $x^{2}+y^{2}+z^{2}=4$. This is the sphere of radius 2 centered at $(0,0,0)$.
b) Level surface is $\frac{x-y+z}{2 x+y-z}=\frac{-1}{4}$, or $6 x-3 y+3 z=0$. This is a plane with normal vector $\langle 6,3,-3\rangle$ passing through $(0,0,0)$.
