Math 164: Multivariable Calculus

Midterm Exam 2 ANSWERS

December 3, 2012

1. (15 points)

Find the extremum points and the maximum and minimum values of the function $f(x, y)=e^{-x y}$ subject to the constraint $x^{2}-x y+y^{2}=9$.

Answer:

Let $g(x, y)=x^{2}-x y+y^{2}$. We would like to find values x, y, and λ such that $\nabla f=\lambda \nabla g$. That is, we would like to solve the system

$$
\begin{array}{r}
-y e^{-x y}=\lambda(2 x-y) \\
-x e^{-x y}=\lambda(-x+2 y) \\
x^{2}-x y+y^{2}=9 \tag{3}
\end{array}
$$

Assume x and y are both nonzero. Since $e^{-x y}$ is never zero, this implies that $\lambda \neq 0$ as well. Solving for $\frac{-e^{-x y}}{\lambda}$ in the first two equations and setting the expressions equal to each other gives us

$$
\frac{2 x-y}{y}=\frac{-x+2 y}{x} .
$$

This implies

$$
2 x^{2}-x y=-x y+2 y^{2}
$$

So

$$
x^{2}=y^{2} .
$$

So $x= \pm y$. If $x=y$, equation (3) implies that $x^{2}=9$, that is $x= \pm 3$. If $x=-y$, equation (3) implies that $3 x^{2}=9$, that is $x= \pm \sqrt{3}$.

Assume $x=0$. Then equation (3) implies that $y= \pm 3$. (Note $\lambda=0$ in this case.)
Assume $y=0$. Then equation (3) implies that $x= \pm 3$. (Note $\lambda=0$ in this case.)
So the list of potential extreme points for f is $\pm(3,3), \pm(\sqrt{3},-\sqrt{3}), \pm(0,3), \pm(3,0)$. We plug these into f to determine the answer, which follows.

The function f has a maximum value of e^{3} at $\pm(\sqrt{3},-\sqrt{3})$, and a minimum value of e^{-9} at $\pm(3,3)$.

2. (15 points)

Consider the double integral

$$
\int_{0}^{\pi / 4} \int_{0}^{1 / \cos \theta} r^{3} d r d \theta
$$

(a) Sketch the region of integration.

Answer:

Note that $0 \leq \theta \leq \frac{\pi}{4}$ and $0 \leq r \leq \frac{1}{\cos \theta}$. This latter inequality implies that $r \cos \theta \leq 1$, that is, $x \leq 1$. Therefore, the region is the triangular region in the first quadrant bound by $y=0, y=x$, and $x=1$.
(b) Convert the above integral to rectangular coordinates.

Answer:

The triangular region from part (a) can be described as $D=\{(x, y): 0 \leq y \leq x, 0 \leq x \leq 1\}$. Recall that $r^{2}=x^{2}+y^{2}$. Also, $r d r d \theta$ is the area element $d A$. So we have

$$
\int_{0}^{\pi / 4} \int_{0}^{1 / \cos \theta} r^{3} d r d \theta=\int_{0}^{\pi / 4} \int_{0}^{1 / \cos \theta} r^{2} r d r d \theta=\iint_{D} r^{2} d A=\int_{0}^{1} \int_{0}^{x}\left(x^{2}+y^{2}\right) d y d x
$$

(c) Change the order of integration in rectangular coordinates.

Answer:

To change the order of integration in our answer to part (b), we'd like the area element $d A$ to be $d x d y$. To do this, describe the triangular region of integration as $D=\{(x, y): y \leq x \leq 1,0 \leq y \leq 1\}$. Then we have

$$
\int_{0}^{\pi / 4} \int_{0}^{1 / \cos \theta} r^{3} d r d \theta=\int_{0}^{1} \int_{y}^{1}\left(x^{2}+y^{2}\right) d x d y
$$

(d) Evaluate the integral in any form you desire.

Answer:

We use our answer to part (b):

$$
\begin{aligned}
\int_{0}^{\pi / 4} \int_{0}^{1 / \cos \theta} r^{3} d r d \theta & =\int_{0}^{1} \int_{0}^{x}\left(x^{2}+y^{2}\right) d y d x \\
& =\left.\int_{0}^{1}\left(x^{2} y+\frac{y^{3}}{3}\right)\right|_{y=0} ^{y=x} d x \\
& =\int_{0}^{1}\left(\frac{4}{3} x^{3}\right) d x \\
& =\frac{4}{3}\left(\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

3. (15 points)

Consider a lamina that occupies the region in the $x y$-plane bound by $x=0, y=0$ and the parabola $y=1-x^{2}$, where $x \geq 0$. The lamina has density function $\rho(x, y)=x+1$.
(a) Find the mass of the lamina.

Answer:

The region of integration is $D=\left\{(x, y): 0 \leq y \leq 1-x^{2}, 0 \leq x \leq 1\right\}$. The mass of the lamina is

$$
\begin{aligned}
m & =\iint_{D} \rho(x, y) d A=\int_{0}^{1} \int_{0}^{1-x^{2}}(x+1) d y d x \\
& =\left.\int_{0}^{1}(x+1) y\right|_{y=0} ^{y=1-x^{2}} d x=\int_{0}^{1}(x+1)\left(1-x^{2}\right) d x \\
& =\int_{0}^{1}\left(x-x^{3}+1-x^{2}\right) d x=\left.\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}+x-\frac{x^{3}}{3}\right)\right|_{0} ^{1} \\
& =\frac{1}{2}-\frac{1}{4}+1-\frac{1}{3}=\frac{11}{12}
\end{aligned}
$$

(b) Find the x-coordinate of the center of mass of the lamina.

Answer:

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \iint_{D} x \rho(x, y) d A=\frac{12}{11} \int_{0}^{1} \int_{0}^{1-x^{2}} x(x+1) d y d x \\
& =\left.\frac{12}{11} \int_{0}^{1}\left(x^{2}+x\right) y\right|_{y=0} ^{y=1-x^{2}} d x=\frac{12}{11} \int_{0}^{1}\left(x^{2}+x\right)\left(1-x^{2}\right) d x \\
& =\frac{12}{11} \int_{0}^{1}\left(x^{2}-x^{4}+x-x^{3}\right) d x=\left.\frac{12}{11}\left(\frac{x^{3}}{3}-\frac{x^{5}}{5}+\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1} \\
& =\frac{12}{11}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{2}-\frac{1}{4}\right)=\frac{23}{55}
\end{aligned}
$$

4. (10 points)

Let B be the ball $x^{2}+y^{2}+z^{2} \leq a^{2}$ of radius a. Its volume $\frac{4 \pi a^{3}}{3}$ can be computed as a triple integral $\iiint_{B} d V$. Set up iterated integrals for computing this triple integral in
(a) rectangular coordinates.

Answer:

$$
\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}} d z d y d x
$$

(b) cylindrical coordinates.

Answer:

$$
\int_{0}^{2 \pi} \int_{0}^{a} \int_{-\sqrt{a^{2}-r^{2}}}^{\sqrt{a^{2}-r^{2}}} r d z d r d \theta
$$

(c) spherical coordinates.

Answer:

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

5. (15 points)

Evaluate the triple integral by converting to cylindrical coordinates:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{1}^{2-\sqrt{x^{2}+y^{2}}} \frac{x y}{\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}}} d z d y d x
$$

Answer:

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{1}^{2-\sqrt{x^{2}+y^{2}}} \frac{x y}{\left(x^{2}+y^{2}\right) \sqrt{x^{2}+y^{2}}} d z d y d x \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} \int_{1}^{2-r} \frac{(r \cos \theta)(r \sin \theta)}{r^{2} r} r d z d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} \int_{1}^{2-r} \cos \theta \sin \theta d z d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} \cos \theta \sin \theta\left(\left.z\right|_{1} ^{2-r}\right) d r d \theta \\
& =\int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta \int_{0}^{1}(1-r) d r \\
& =\left.\left.\frac{\sin ^{2} \theta}{2}\right|_{0} ^{\pi / 2}\left(r-\frac{r^{2}}{2}\right)\right|_{0} ^{1} \\
& =\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}
\end{aligned}
$$

6. (15 points)

Let R be the triangular region in the $x y$-plane whose vertices have coordinates $(-1,-3),(3,1)$ and $(0,0)$. Let T be the transformation from the $u v$-plane to the $x y$-plane given by

$$
T(u, v)=(3 u+v, 3 v+u)
$$

(a) There are three points in the $u v$-plane whose images under the transformation are the vertices of the triangle. What are these three points?

Answer:

For each given point (x, y), we need to find (u, v) such that $T(u, v)=(x, y)$. Note that $T(0,0)=(0,0)$, $T(0,-1)=(-1,-3)$, and $T(1,0)=(3,1)$. Therefore the three points asked for are $(0,0),(0,-1)$, and $(1,0)$.
(b) What is the Jacobian of this transformation?

Answer:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|=9-1=8
$$

(c) Evaluate the following double integral:

$$
\iint_{R}(x-3 y) d A
$$

Answer:

Let D denote the region in the $u v$-plane such that $T(D)=R$. From part (a), we know that this is the triangle in the $u v$-plane bounded by the lines $u=0, v=0$, and $v=u-1$. That is, $D=\{(u, v)$: $u-1 \leq v \leq 0,0 \leq u \leq 1\}$. Using change of variables,

$$
\begin{aligned}
\iint_{R}(x-3 y) d A & =\int_{0}^{1} \int_{u-1}^{0}(3 u+v-3(3 v+u))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d v d u \\
& =-\int_{0}^{1} \int_{0}^{u-1}(-8 v)(8) d v d u \\
& =64 \int_{0}^{1} \int_{0}^{u-1} v d v d u \\
& =\left.64 \int_{0}^{1} \frac{v^{2}}{2}\right|_{0} ^{u-1} d u \\
& =32 \int_{0}^{1}\left(u^{2}-2 u+1\right) d u \\
& =\left.32\left(\frac{u^{3}}{3}-u^{2}+u\right)\right|_{0} ^{1} \\
& =\frac{32}{3}
\end{aligned}
$$

7. (15 points)

Evaluate

$$
\iiint_{\mathcal{B}} z e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V
$$

where \mathcal{B} is the hemispherical solid bounded by the sphere of radius 2 centered at the origin and the $x y$-plane, with $z \geq 0$.

Answer:

$$
\begin{aligned}
\iiint_{\mathcal{B}} z e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}} d V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2}(\rho \cos \phi) e^{\rho^{4}} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2} \rho^{3} e^{\rho^{4}} \cos \phi \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 2} \cos \theta \sin \theta d \phi \int_{0}^{2} \rho^{3} e^{\rho^{4}} d \rho \\
& =\left(\left.\theta\right|_{0} ^{2 \pi}\right)\left(\left.\frac{\sin ^{2} \theta}{2}\right|_{0} ^{\pi / 2}\right)\left(\left.\frac{1}{4} e^{\rho^{4}}\right|_{0} ^{2}\right) \\
& =(2 \pi)\left(\frac{1}{2}\right)\left(\frac{1}{4}\left(e^{16}-1\right)\right) \\
& =\frac{\pi}{4}\left(e^{16}-1\right)
\end{aligned}
$$

