Math 164: Multivariable Calculus

Midterm Exam 1
October 18, 2012

NAME (please print legibly): \qquad
Your University ID Number: \qquad

CIRCLE YOUR INSTRUCTOR: Fili Madhu Mahmood

- NO calculators, cell phones, iPods or other electronic devices are allowed during the exam.
- Show your work and justify your answers. You may not receive credit for a correct answer if insufficient work is shown or insufficient justification is given.
- There is no need to simplify your answers.

QUESTION	VALUE	SCORE
1	10	
2	10	
3	15	
4	15	
5	10	
6	15	
7	10	
8	15	
Bonus	5	
TOTAL	100	

1. (10 points)

(a) Let $\vec{v}=\langle 1,0,-2\rangle$ and $\vec{w}=\langle 1,2,3\rangle$. Find a unit vector orthogonal to both \vec{v} and \vec{w}.

Solution: We note that the cross product of \vec{v} and \vec{w} is orthogonal to both.

$$
\vec{v} \times \vec{w}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & -2 \\
1 & 2 & 3
\end{array}\right|=\langle 4,-5,2\rangle
$$

The magnitude of $\langle 4,-5,2\rangle=\sqrt{16+25+4}=\sqrt{45}$.
So the two possible unit vectors orthogonal to both are $\pm \frac{1}{\sqrt{45}}\langle 4,-5,2\rangle$.
(b) Find the area of the triangle whose vertices are $P(3,0,-6), Q(-3,-6,-9)$ and the origin.

Solution: This area is $\frac{1}{2}|3 \vec{v} \times-3 \vec{w}|=\frac{9}{2} \sqrt{45}$.
2. (10 points) Find the distance from the point $(1,2,-3)$ to the plane whose equation is $z-3=$ $4(x-2)+y$.
Solution:
The equation of the plane has general form $0=4 x+y-z-5$. So

$$
d=\frac{|4(1)+(2)-(-3)-5|}{\sqrt{4^{2}+1^{2}+1^{2}}}
$$

3. (15 points) A moving particle's position at any time t is given by

$$
\vec{r}(t)=\langle 2 \cos (2 t), 3 t,-2 \sin (2 t)\rangle .
$$

(a) Calculate the velocity vector as a function of time t.

Solution: We differentiate each component of the position vector to get the velocity vector as a function of time t :

$$
\vec{v}(t)=\vec{r}^{\prime}(t)=\langle-4 \sin (2 t), 3,-4 \cos (2 t)\rangle
$$

(b) Find the arc length of the curve $\vec{r}(t)$ between $t=0$ and $t=\pi$.

Solution: The arc length of the curve $\vec{r}(t)$ between $t=0$ and $t=\pi$ is given by:

$$
\begin{aligned}
s & =\int_{0}^{\pi}\left|\vec{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{\pi} \sqrt{16 \sin ^{2}(2 t)+9+16 \cos ^{2}(2 t)} d t \\
& =\int_{0}^{\pi} \sqrt{16+9} d t \quad \text { since } \sin ^{2}(2 t)+\cos ^{2}(2 t)=1 \\
& =\int_{0}^{\pi} 5 d t \\
& =\left.5 t\right|_{0} ^{\pi} \\
& =5 \pi .
\end{aligned}
$$

(c) Reparametrize the curve in terms of arc length s measured from $t=0$.

Solution: Based on the work in part (b), we know that the arc length s at any time t, measured from $t=0$, is given by $s=\int_{0}^{t}\left|\vec{r}^{\prime}(u)\right| d u=5 t$. Therefore $t=\frac{s}{5}$. So

$$
\vec{r}(s)=\left\langle 2 \cos \left(\frac{2 s}{5}\right), \frac{3 s}{5},-2 \sin \left(\frac{2 s}{5}\right)\right\rangle .
$$

4. (15 points) Consider the function

$$
f(x, y)=\frac{x y^{2}}{x^{3}+2 y^{3}}
$$

(a) Does $f(x, y)$ approach a single value as (x, y) approaches $(0,0)$ along the line $y=x$? If so, find this value.

Solution: Yes. Along $y=x$,

$$
f(x, y)=f(x, x)=\frac{x \cdot x^{2}}{x^{3}+2 x^{3}}=\frac{x^{3}}{3 x^{3}}=\frac{1}{3}
$$

for all $x \neq 0$. So as $(x, y) \rightarrow(0,0)$ along $y=x, f(x, y) \rightarrow \frac{1}{3}$.
(b) Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exist? If it exists, determine the value. If if doesn't exist, explain why.

Solution: No. Along the path $x=0$,

$$
f(x, y)=f(0, y)=\frac{0 \cdot y^{2}}{0^{3}+2 y^{3}}=\frac{0}{2 y^{3}}=0
$$

for all $y \neq 0$. So as $(x, y) \rightarrow(0,0)$ along $x=0, f(x, y) \rightarrow 0$. This is not the same value as the one $f(x, y)$ approaches along $y=x$ in part (a). Therefore, $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist.
(c) Determine the set of points at which f is continuous.

Solution: Since f is a rational function, it is continuous wherever it is defined. Therefore, f is continuous on all points $(x, y) \in \mathbb{R}^{2}$ such that $x^{3}+2 y^{3} \neq 0$. That is, f is continuous on all points $(x, y) \in \mathbb{R}^{2}$ that do not lie on the line $x=-\sqrt[3]{2} y$.
5. (10 points) Consider the surface

$$
\frac{x}{y}+\frac{y}{z}=1
$$

We view z as an implicitly defined function of x, y.
(a) Find $\frac{\partial z}{\partial x}$. (Do not simplify.)
(b) Find $\frac{\partial z}{\partial y}$. (Do not simplify.)

6. (15 points)

Find all points on the ellipsoid

$$
2 x^{2}+y^{2}+3 z^{2}=9
$$

for which the tangent plane to the surface at that point is parallel to the plane $2 x+2 y-3 z=0$.

7. (10 points)

For this problem, let $z=f(x, y)=x^{2} e^{x y}$.
Give the unit vector that points in the direction of maximum increase along the surface when $(x, y)=(1,1)$.

8. (15 points)

Consider the surface $z=f(x, y)=x^{3}+y^{3}-3 x y+2$.
(a) Find all critical points of $f(x, y)$.
(b) Find all local extreme values of f and the points at which they occur. Find all saddle points.

Bonus Problem. (5 points) Prove that $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{\sqrt{x^{2}+y^{2}}}=0$.
Solution: Let $\epsilon>0$. We want to show that there exists a $\delta>0$ such that

$$
\text { if } \sqrt{(x-0)^{2}+(y-0)^{2}}<\delta \text { then }\left|\frac{2 x y}{\sqrt{x^{2}+y^{2}}}-0\right|<\epsilon,
$$

that is,

$$
\text { if } \sqrt{x^{2}+y^{2}}<\delta \text { then } \frac{2|x||y|}{\sqrt{x^{2}+y^{2}}}<\epsilon
$$

Let $\delta=\frac{\epsilon}{2}$. Assume $\sqrt{x^{2}+y^{2}}<\delta$. Since $y^{2} \geq 0$, then

$$
|x|=\sqrt{x^{2}} \leq \sqrt{x^{2}+y^{2}}
$$

Since $\sqrt{x^{2}+y^{2}} \geq 0$, then as long as x and y are not both 0 , we have

$$
\frac{|x|}{\sqrt{x^{2}+y^{2}}} \leq 1
$$

Multiplying both sides of this inequality by $2|y|$, we get

$$
\begin{array}{rlr}
\frac{2|x||y|}{\sqrt{x^{2}+y^{2}}} & \leq 2|y| & \\
& \leq 2 \sqrt{y^{2}} & \\
& \leq 2 \sqrt{x^{2}+y^{2}} & \\
& \text { since } x^{2} \geq 0 \\
& <2 \delta & \\
& =2 \cdot \frac{\epsilon}{2} & \\
& =\epsilon &
\end{array}
$$

Hence, by the formal definition of limit,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{\sqrt{x^{2}+y^{2}}}=0
$$

