Answers to Math 164 Final, Fall 2012.

- 1. a) $2(x-1) + 2(y-1) 2\sqrt{3}(z-\sqrt{3}) = 0$, or $2x + 2y 2\sqrt{3}z = -2$. b) Intersection is (2, 2, 0) and distance is $\sqrt{5}$.
- 2. The limit does not exist: the limit along x = 0 is ∞ while the limit along y = x is $\frac{1}{2}$.
- 3. Minimum is -3 and maximum is +3, occurring at $(x, y) = (\pm 1, \pm 3)$.
- 4. (0,0) is a saddle point, (1,0) is a local minimum.
- 5. 6π .

6. a)
$$\frac{1}{2\pi} \left(2\pi + \frac{32}{3} \right) = 1 + \frac{16}{3\pi}.$$

b) -16.

- c) Yes, it is conservative: $\mathbf{F} = \nabla U$ where $U = x^3 + \frac{1}{2}y^2$.
- d) U(3,4) U(-1,0) = 36.
- 7. By Green's Theorem, it is $\iint_D [y e^x y e^x + 2] dy dx = \iint_D 2 dy dx = 2 \operatorname{Area}(D) = 8.$

8.
$$\frac{1}{3} \left(2^{3/2} - 1 \right) \pi$$
.

- 9. a) 5z.
 - b) 32.
 - c) By the Divergence Theorem it is $\int_0^2 \int_0^2 \int_0^2 5z \, dz \, dy \, dx = 40.$
 - d) 40 32 = 8.
- 10. a) $\langle x e^{xy}, -y e^{xy}, 4 \rangle$.
 - b) $\langle x, y, z \rangle = \langle \cos t, \sin t, 0 \rangle$ for $0 \le t \le 2\pi$.
 - c) By Stokes's Theorem, it is $\oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_0^{2\pi} \left[-\sin t \cdot (-\sin t) + (3\cos t)(\cos t) + 0 \right] dt = 4\pi.$