Math 164: Multivariable Calculus

Final Exam

December 16, 2012

NAME (please print legibly): \qquad
Your University ID Number: \qquad

CIRCLE YOUR INSTRUCTOR: Fili Madhu Mahmood

- NO calculators, cell phones, iPods or other electronic devices are allowed during the exam.
- Show your work and justify your answers. You may not receive credit for a correct answer if insufficient work is shown or insufficient justification is given.
- There is no need to simplify your answers.

Part A		
QUESTION	VALUE	SCORE
1	20	
2	20	
3	20	
4	20	
5	20	
TOTAL	100	

Part B		
QUESTION	VALUE	SCORE
6	20	
7	20	
8	20	
9	20	
10	20	
TOTAL	100	

Part A

1. (20 points)
(a) Find the equation of the tangent plane to the surface $x^{2}+y^{2}-z^{2}=-1$ at the point $(1,1, \sqrt{3})$.
(b) Suppose you head toward the $x y$-plane from the surface $x^{2}+y^{2}-z^{2}=-1$ at the point $(1,1, \sqrt{3})$ by following the normal line to the surface at that point.
1.What are the x and y-coordinates at which you will hit the $x y$-plane?
(continued on next page...)
2.How far do you travel before you reach the $x y$-plane along this line?
2. (20 points) Find the limit if it exists. If it does not exist, explain why.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin ^{2}(x)}{x^{4}+y^{4}}
$$

3. (20 points) Find the maximum and minimum values of the function $f(x, y)=x y$ subject to the constraint $18 x^{2}+2 y^{2}=36$.
4. (20 points) Find and classify all critical points for the function $f(x, y)=6 x y^{2}-3 x^{2}+2 x^{3}+3 y^{2}$.
5. (20 points) Let D be the elliptical region given by $\frac{x^{2}}{4}+\frac{y^{2}}{9} \leq 1$. Compute

$$
\iint_{D} x^{2} d x d y
$$

Hint: Start with the change of variables $x=2 u, y=3 v$.

Part B

6. (20 points) Let C be the curve satisfying $x^{2}+y^{2}=4, y \geq 0$, with counterclockwise orientation.
(a) Find the average value of the scalar function $f(x, y)=1+y x^{2}$ on the curve C.
(b) Suppose that a particle moves along C in the presence of a force field $\mathbf{F}(x, y)=\left\langle 3 x^{2}, y\right\rangle$. Compute the work $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(c) Is the field $\mathbf{F}(x, y)=\left\langle 3 x^{2}, y\right\rangle$ from the previous question conservative? Why or why not?
(d) Suppose γ is a smooth oriented curve which starts at $(-1,0)$ and ends at $(3,4)$. Compute $\int_{\gamma} \mathbf{F} \cdot d \mathbf{r}$ with \mathbf{F} as above.
7. (20 points) Suppose that D is a region in \mathbb{R}^{2} with area 4 . Compute

$$
\oint_{\partial D}\left(\frac{1}{2} y^{2} e^{x}-2 y\right) d x+\left(\sin y+y e^{x}\right) d y
$$

Be sure to justify your answer.
8. (20 points) Let S be the helicoid given by the parametrization $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle$ with $0 \leq u \leq 1$ and $0 \leq v \leq \pi$. Compute

$$
\iint_{S} \sqrt{x^{2}+y^{2}} d S
$$

9. (20 points) Consider the solid cube $E=\{(x, y, z): 0 \leq x \leq 2,0 \leq y \leq 2,0 \leq z \leq 2\}$. The boundary surface S of E is a closed six-sided box. Define a vector field on \mathbb{R}^{3} by $\mathbf{F}(x, y, z)=x z \mathbf{i}+3 x z \mathbf{j}+2 z^{2} \mathbf{k}$.
(a) Find $\operatorname{div} \mathbf{F}$.
(b) Find the flux of \mathbf{F} through the top face of S (at $z=2$), oriented upwards.
(c) Use the Divergence Theorem to find the flux of \mathbf{F} through S.
(d) Find the flux of \mathbf{F} through the five-sided open box obtained by removing the top face from S.

10. (20 points)

Let S be the hemisphere $x^{2}+y^{2}+z^{2}=1, x \geq 0$, oriented so that the normal vector always points away from the origin. Let $\mathbf{F}(x, y, z)=-y \mathbf{i}+3 x \mathbf{j}+e^{x y} \mathbf{k}$.
(a) Find curl \mathbf{F}.
(b) Give a parametrization for the boundary C of the surface S.
(c) Use Stokes' Theorem to calculate the surface integral $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$.

