
MATH 164

Midterm 2 ANSWERS

November 21, 2011

1. (12 points) Consider the function f(x, y) = x2 − y3 + 3y + 1 for (x, y) ∈ R2.

(a) Find the critical points of f .

(b) Find the local maxima, minima, and saddle points of f .

(c) Are any of these points global maxima or minima?

Answer:

(a) We set the gradient of f equal to 0.

0 = ∇f(x, y) = (2x,−3y2 + 3) = (2x,−3(y − 1)(y + 1)).

The critical points of f are the solutions of this equation, namely (0, 1) and (0,−1).

(b) We use the second derivative test. First we compute

D = det

(
fxx fxy

fyx fyy

)
= det

(
2 0

0 −6y

)
= −12y

Thus at (0, 1) we have D < 0, so this is a saddle point.

At (0,−1), D > 0 and fxx > 0, so we have a local minimum.

(c) Since f(x, y) → +∞ along the line y = 0, x → +∞, and f(x, y) → −∞ along the line

x = 0, y → +∞, it follows that none of these points are global maxima or minima.

2. (13 points) Find the extreme values of f(x, y) = x2 + xy + y2 + x − y + 1 subject to

the constraint g(x, y) = x2 + y2 = 1. Go through the following steps:

(a) Use the Lagrange multiplier method to get two equations involving x, y and λ (the

Lagrange multiplier).

(b) Starting from these two equations, show that λ = 3
2

or y = 1
1−2λ and provide an

argument to show λ 6= 1
2
.
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(c) Find the four extreme points and evaluate f at these points to see which ones are

maximum points and which ones are minimum points.

Answer:

(a) We need to use Lagrange multipliers. We will solve the system given by the equations:

∇f(x, y) = λ∇g(x, y)

g(x, y) = x2 + y2 = 1

From the first relation we get that

2x+ y + 1 = 2xλ

2y + x− 1 = 2yλ

From the second equation, we get that x = 1 + 2(λ − 1)y; we plug in this expression

for x into the first equation and we get

2(1 + 2(λ− 1)y)(1− y) + y + 1 = 0

This is equivalent to

(2λ− 3)(y(−2λ+ 1)− 1) = 0

(b) There are two possibilities: λ = 3
2

or y = 1
1−2λ , provided that λ 6= 1

2
(note that λ

couldn’t be equal to 1
2
, since the equations would become x + y = 1 and x + y = −1,

which is impossible).

(c) If λ = 3
2

then x− y = 1 and plugging into the constraint, one obtains:

x2 + (x− 1)2 = 1

or

2x(x− 1) = 0

which has two solutions x = 0 and x = 1. Hence we get two points (0,−1) and (1, 0).

Notice that f(0,−1) = f(1, 0) = 3.

If y = 1
1−2λ , then x = − 1

1−2λ = −y, so plugging into the constraint one obtains 2x2 = 1,

so x = ± 1√
2
. Hence we get two more points

(
1√
2
,− 1√

2

)
and

(
− 1√

2
, 1√

2

)
. Notice that

f
(

1√
2
,− 1√

2

)
= 3+2

√
2

2
and f

(
− 1√

2
, 1√

2

)
= 3−2

√
2

2
.

We can conclude that (0,−1) and (1, 0) are maximum points (fmax = 3), while(
− 1√

2
, 1√

2

)
is the minimum point (fmin = 3−2

√
2

2
).
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3. (12 points) Consider the following integral:

I =

∫ 3

1

∫ 2

1

xyexy
2

dxdy

Is it easier to solve this integral as written, or by changing the order of integration? Choose

the easiest way and evaluate the integral.

Answer:

Integrating first over x would involve using integration by parts, while integrating first over

y would only involve a u-substitution. So we make the following substitution and change

the order (with x held constant for the first integral)

u = xy2 du = 2xydy
du

2
= xydy

Then

I =

∫ 2

1

∫ 3

1

xyexy
2

dydx

=
1

2

∫ 2

1

∫ 9x

x

eududx

=
1

2

∫ 2

1

eu
∣∣∣9x
x
dx

=
1

2

∫ 2

1

(
e9x − ex

)
dx

=
1

2

(
1

9
e9x − ex

) ∣∣∣∣2
1

=
e18

18
− e9

18
+
e2

2
− e

2

4. (13 points) Using polar coordinates, calculate the integral∫∫
D

(x2 + y2) dx dy

where the domain D is inside the half-circle x2 + y2 = 1, x ≥ 0, between the lines y =
√

3x,

x =
√

3y. Go through the following steps:

(a) Determine the bounds for r and θ (it might be helpful to draw a sketch of the domain).

(b) Solve the new double integral.
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Answer:

(a) Let x = r cos θ and y = r sin θ. Since the domain is inside the circle, we know that

0 ≤ r ≤ 1. The first line has slope tan
(
π
3

)
, while the second has slope tan

(
π
6

)
, which

leads us to the bounds of θ: π
6
≤ θ ≤ π

3
.

(b) The integral becomes:

π
3∫

π
6

1∫
0

r2r dr dθ =

π
3∫

π
6

1∫
0

r3 dr dθ =


π
3∫

π
6

dθ

 ·
 1∫

0

r3 dr

 =
π

6
· 1

4
=

π

24

5. (13 points)

Find the center of mass of the region between the curve y = x2, the x-axis, and the line

y = 1.

(a) Assuming the density of region is 1, what is the mass of the region?

(b) Find the center of mass x̄ in the x direction.

(c) Find the center of mass ȳ in the y direction.

Answer:

Due to the typo noticed during the exam, three different solutions have been accepted. We

present all three:

Solution 1

0 ≤ x ≤ 1 and x2 ≤ y ≤ 1

(a) Since the density is 1, the mass of the region is the area. This can be done using a single

integral,

m =

∫ 1

0

(1− x2)dx = 1− x3

3

∣∣∣∣1
0

=
2

3
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(b) We have

x̄ =
1

m

∫ 1

0

∫ 1

x2
xdydx

=
3

2

∫ 1

0

x · (1− x2)dx

=
3

2
·
(
x2

2
− x4

4

) ∣∣∣∣1
0

=
3

8

(c) We have

ȳ =
1

m

∫ 1

0

∫ 1

x2
ydydx

=
3

2

∫ 1

0

y2

2

∣∣∣∣1
x2
dx

=
3

4

∫ 1

0

(1− x4)dx

=
3

4
·
(
x− x5

5

) ∣∣∣∣1
0

=
3

5

Solution 2

−1 ≤ x ≤ 1 and x2 ≤ y ≤ 1

(a) Since the density is 1, the mass of the region is the area. This can be done using a single

integral,

m =

∫ 1

−1
(1− x2)dx = 1− x3

3

∣∣∣∣1
−1

=
4

3

(b) We have

x̄ =
1

m

∫ 1

−1

∫ 1

x2
xdydx

=
3

4

∫ 1

−1
x · (1− x2)dx

=
3

4
·
(
x2

2
− x4

4

) ∣∣∣∣1
−1

= 0
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(c) We have

ȳ =
1

m

∫ 1

−1

∫ 1

x2
ydydx

=
3

4

∫ 1

−1

y2

2

∣∣∣∣1
x2
dx

=
3

8

∫ 1

−1
(1− x4)dx

=
3

8
·
(
x− x5

5

) ∣∣∣∣1
−1

=
3

8

Solution 3

0 ≤ x ≤ 1 and 0 ≤ y ≤ x2

(a) Since the density is 1, the mass of the region is the area. This can be done using a single

integral,

m =

∫ 1

0

x2dx =
x3

3

∣∣∣∣1
0

=
1

3

(b) We have

x̄ =
1

m

∫ 1

0

∫ x2

0

xdydx

= 3

∫ 1

0

x · x2dx

= 3 · x
4

4

∣∣∣∣1
0

=
3

4
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(c) We have

ȳ =
1

m

∫ 1

0

∫ x2

0

ydydx

= 3

∫ 1

0

y2

2

∣∣∣∣x2
0

dx

= 3

∫ 1

0

x4

2
dx

= 3 · x
5

5 · 2

∣∣∣∣1
0

=
3

10

6. (12 points)

Calculate the following triple integral:

I =

∫∫∫
E

dx dy dz

(1 + x+ y + z)3

where E is the domain bounded by the planes x = 0, y = 0, z = 0 and x+ y + z = 1.

Answer:

The domain can be described as follows

E = {(x, y, z) ∈ R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, 0 ≤ z ≤ 1− x− y}.

The integral becomes:

I =

1∫
0

1−x∫
0

1−x−y∫
0

1

(1 + x+ y + z)3
dz dy dx =

1∫
0

1−x∫
0

−1

2

1

(1 + x+ y + z)2

∣∣∣z=1−x−y

z=0
dy dx

=

1∫
0

1−x∫
0

[
−1

8
+

1

2
· 1

(1 + x+ y)2

]
dy dx =

1∫
0

[
−y

8
− 1

2
· 1

(1 + x+ y)

] ∣∣∣y=1−x

y=0
dx

=

1∫
0

[
−3

8
+
x

8
+

1

2

1

1 + x

]
dx =

[
−3x

8
+
x2

16
+

1

2
ln(1 + x)

] ∣∣∣1
0

=
1

2

(
ln 2− 5

8

)
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7. (12 points)

In this question we will set up an integral in cylindrical coordinates. DO NOT EVALU-

ATE THE INTEGRAL.

The problem is to determine the volume of the region inside the sphere x2 + y2 + z2 = 2 and

above the plane z = 1.

(a) First find the value of r at the points of intersection of the sphere and the plane.

(b) Find the upper and lower limits of integration for z, as a function of r.

(c) Set up the integral, but DO NOT EVALUATE IT.

Answer:

(a) Using the fact that r2 = x2 + y2, we can write the equations of the sphere as r2 + z2 = 2.

Since z = 1 defines the plane, we can substitute into the equation for the sphere and get

r2 + 1 = 2 or r2 = 1 or r = 1, since the radial coordinate r is never negative.

(b) The region inside the sphere x2 + y2 + z2 = 2 and above the plane z = 1 gives us a lower

limit of z = 1 and an upper limit of z =
√

2− r2, since r2 = x2 + y2.

(c) Using cylindrical coordinates z, r, θ, we would use the differential rdzdrdθ. Using the

limits of integration from parts (a) and (b), we get

Volume =

∫ 2π

0

∫ 1

0

∫ √2−r2
1

rdzdrdθ

8. (13 points) Using spherical coordinates, calculate the integral

I =

∫∫∫
E

√
x2 + y2 + z2 dx dy dy

where E = {(x, y, z) ∈ R : z ≥ 0, x2 + y2 + z2 ≤ z}. Follow these steps:

(a) Knowing that 0 < ρ < g(φ) and 0 ≤ φ ≤ h(π), determine the expressions g(φ) and

h(π). Are there any restrictions for θ?

(b) Calculate I and show that I < 1
3
.

Answer:
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(a) Let x = ρ sinφ cos θ, y = ρ sinφ sin θ and z = ρ cosφ. We need to find the bounds for

ρ, θ, φ.

From the description of the domain, we see that at the boundary: x2 + y2 + z2 = z,

which becomes ρ2 = ρ cosφ, so 0 ≤ ρ ≤ cosφ.

Another condition is give by z ≥ x2 + y2 + z2 ≥ 0, which means the domain lies above

the (xy)-plane, so φ is bounded by: 0 < φ ≤ π
2
. For θ there isn’t any restriction, so

0 ≤ θ ≤ 2π.

(b) The integral becomes:

I =

2π∫
0

π
2∫

0

cosφ∫
0

ρ · ρ2 sinφ dρ dφ dθ =

2π∫
0

π
2∫

0

[
ρ4

4

] ∣∣∣cosφ
0

sinφ dφ dθ

=

2π∫
0

π
2∫

0

cos4 φ

4
sinφ dφ dθ =

 2π∫
0

dθ




π
2∫

0

cos4 φ

4
sinφ dφ

 = 2π · 1

4
·
(
−cos5 φ

5

∣∣∣π2
0

)

=
π

10
<

1

3
.
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