MATH 164

Midterm 2 ANSWERS

November 21, 2011

1. (12 points) Consider the function $f(x, y)=x^{2}-y^{3}+3 y+1$ for $(x, y) \in \mathbf{R}^{2}$.
(a) Find the critical points of f.
(b) Find the local maxima, minima, and saddle points of f.
(c) Are any of these points global maxima or minima?

Answer:

(a) We set the gradient of f equal to 0 .

$$
0=\nabla f(x, y)=\left(2 x,-3 y^{2}+3\right)=(2 x,-3(y-1)(y+1)) .
$$

The critical points of f are the solutions of this equation, namely $(0,1)$ and $(0,-1)$.
(b) We use the second derivative test. First we compute

$$
D=\operatorname{det}\left(\begin{array}{cc}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
2 & 0 \\
0 & -6 y
\end{array}\right)=-12 y
$$

Thus at $(0,1)$ we have $D<0$, so this is a saddle point.
At $(0,-1), D>0$ and $f_{x x}>0$, so we have a local minimum.
(c) Since $f(x, y) \rightarrow+\infty$ along the line $y=0, x \rightarrow+\infty$, and $f(x, y) \rightarrow-\infty$ along the line $x=0, y \rightarrow+\infty$, it follows that none of these points are global maxima or minima.
2. (13 points) Find the extreme values of $f(x, y)=x^{2}+x y+y^{2}+x-y+1$ subject to the constraint $g(x, y)=x^{2}+y^{2}=1$. Go through the following steps:
(a) Use the Lagrange multiplier method to get two equations involving x, y and λ (the Lagrange multiplier).
(b) Starting from these two equations, show that $\lambda=\frac{3}{2}$ or $y=\frac{1}{1-2 \lambda}$ and provide an argument to show $\lambda \neq \frac{1}{2}$.
(c) Find the four extreme points and evaluate f at these points to see which ones are maximum points and which ones are minimum points.

Answer:

(a) We need to use Lagrange multipliers. We will solve the system given by the equations:

$$
\begin{aligned}
\nabla f(x, y) & =\lambda \nabla g(x, y) \\
g(x, y) & =x^{2}+y^{2}=1
\end{aligned}
$$

From the first relation we get that

$$
\begin{aligned}
& 2 x+y+1=2 x \lambda \\
& 2 y+x-1=2 y \lambda
\end{aligned}
$$

From the second equation, we get that $x=1+2(\lambda-1) y$; we plug in this expression for x into the first equation and we get

$$
2(1+2(\lambda-1) y)(1-y)+y+1=0
$$

This is equivalent to

$$
(2 \lambda-3)(y(-2 \lambda+1)-1)=0
$$

(b) There are two possibilities: $\lambda=\frac{3}{2}$ or $y=\frac{1}{1-2 \lambda}$, provided that $\lambda \neq \frac{1}{2}$ (note that λ couldn't be equal to $\frac{1}{2}$, since the equations would become $x+y=1$ and $x+y=-1$, which is impossible).
(c) If $\lambda=\frac{3}{2}$ then $x-y=1$ and plugging into the constraint, one obtains:

$$
x^{2}+(x-1)^{2}=1
$$

or

$$
2 x(x-1)=0
$$

which has two solutions $x=0$ and $x=1$. Hence we get two points $(0,-1)$ and $(1,0)$. Notice that $f(0,-1)=f(1,0)=3$.

If $y=\frac{1}{1-2 \lambda}$, then $x=-\frac{1}{1-2 \lambda}=-y$, so plugging into the constraint one obtains $2 x^{2}=1$, so $x= \pm \frac{1}{\sqrt{2}}$. Hence we get two more points $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Notice that $f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\frac{3+2 \sqrt{2}}{2}$ and $f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{3-2 \sqrt{2}}{2}$.
We can conclude that $(0,-1)$ and $(1,0)$ are maximum points $\left(f_{\max }=3\right)$, while $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is the minimum point $\left(f_{\min }=\frac{3-2 \sqrt{2}}{2}\right)$.
3. (12 points) Consider the following integral:

$$
I=\int_{1}^{3} \int_{1}^{2} x y e^{x y^{2}} d x d y
$$

Is it easier to solve this integral as written, or by changing the order of integration? Choose the easiest way and evaluate the integral.

Answer:

Integrating first over x would involve using integration by parts, while integrating first over y would only involve a u-substitution. So we make the following substitution and change the order (with x held constant for the first integral)

$$
u=x y^{2} \quad d u=2 x y d y \quad \frac{d u}{2}=x y d y
$$

Then

$$
\begin{aligned}
I & =\int_{1}^{2} \int_{1}^{3} x y e^{x y^{2}} d y d x \\
& =\frac{1}{2} \int_{1}^{2} \int_{x}^{9 x} e^{u} d u d x \\
& =\left.\frac{1}{2} \int_{1}^{2} e^{u}\right|_{x} ^{9 x} d x \\
& =\frac{1}{2} \int_{1}^{2}\left(e^{9 x}-e^{x}\right) d x \\
& =\left.\frac{1}{2}\left(\frac{1}{9} e^{9 x}-e^{x}\right)\right|_{1} ^{2} \\
& =\frac{e^{18}}{18}-\frac{e^{9}}{18}+\frac{e^{2}}{2}-\frac{e}{2}
\end{aligned}
$$

4. (13 points) Using polar coordinates, calculate the integral

$$
\iint_{D}\left(x^{2}+y^{2}\right) d x d y
$$

where the domain D is inside the half-circle $x^{2}+y^{2}=1, x \geq 0$, between the lines $y=\sqrt{3} x$, $x=\sqrt{3} y$. Go through the following steps:
(a) Determine the bounds for r and θ (it might be helpful to draw a sketch of the domain).
(b) Solve the new double integral.

Answer:

(a) Let $x=r \cos \theta$ and $y=r \sin \theta$. Since the domain is inside the circle, we know that $0 \leq r \leq 1$. The first line has slope $\tan \left(\frac{\pi}{3}\right)$, while the second has slope $\tan \left(\frac{\pi}{6}\right)$, which leads us to the bounds of $\theta: \frac{\pi}{6} \leq \theta \leq \frac{\pi}{3}$.
(b) The integral becomes:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{0}^{1} r^{2} r d r d \theta=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{0}^{1} r^{3} d r d \theta=\left(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d \theta\right) \cdot\left(\int_{0}^{1} r^{3} d r\right)=\frac{\pi}{6} \cdot \frac{1}{4}=\frac{\pi}{24}
$$

5. (13 points)

Find the center of mass of the region between the curve $y=x^{2}$, the x-axis, and the line $y=1$.
(a) Assuming the density of region is 1 , what is the mass of the region?
(b) Find the center of mass \bar{x} in the x direction.
(c) Find the center of mass \bar{y} in the y direction.

Answer:

Due to the typo noticed during the exam, three different solutions have been accepted. We present all three:

Solution 1

$0 \leq x \leq 1$ and $x^{2} \leq y \leq 1$
(a) Since the density is 1 , the mass of the region is the area. This can be done using a single integral,

$$
m=\int_{0}^{1}\left(1-x^{2}\right) d x=1-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{2}{3}
$$

(b) We have

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \int_{0}^{1} \int_{x^{2}}^{1} x d y d x \\
& =\frac{3}{2} \int_{0}^{1} x \cdot\left(1-x^{2}\right) d x \\
& =\left.\frac{3}{2} \cdot\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1} \\
& =\frac{3}{8}
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\bar{y} & =\frac{1}{m} \int_{0}^{1} \int_{x^{2}}^{1} y d y d x \\
& =\left.\frac{3}{2} \int_{0}^{1} \frac{y^{2}}{2}\right|_{x^{2}} ^{1} d x \\
& =\frac{3}{4} \int_{0}^{1}\left(1-x^{4}\right) d x \\
& =\left.\frac{3}{4} \cdot\left(x-\frac{x^{5}}{5}\right)\right|_{0} ^{1} \\
& =\frac{3}{5}
\end{aligned}
$$

Solution 2

$-1 \leq x \leq 1$ and $x^{2} \leq y \leq 1$
(a) Since the density is 1 , the mass of the region is the area. This can be done using a single integral,

$$
m=\int_{-1}^{1}\left(1-x^{2}\right) d x=1-\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{4}{3}
$$

(b) We have

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \int_{-1}^{1} \int_{x^{2}}^{1} x d y d x \\
& =\frac{3}{4} \int_{-1}^{1} x \cdot\left(1-x^{2}\right) d x \\
& =\left.\frac{3}{4} \cdot\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{-1} ^{1} \\
& =0
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\bar{y} & =\frac{1}{m} \int_{-1}^{1} \int_{x^{2}}^{1} y d y d x \\
& =\left.\frac{3}{4} \int_{-1}^{1} \frac{y^{2}}{2}\right|_{x^{2}} ^{1} d x \\
& =\frac{3}{8} \int_{-1}^{1}\left(1-x^{4}\right) d x \\
& =\left.\frac{3}{8} \cdot\left(x-\frac{x^{5}}{5}\right)\right|_{-1} ^{1} \\
& =\frac{3}{8}
\end{aligned}
$$

Solution 3

$0 \leq x \leq 1$ and $0 \leq y \leq x^{2}$
(a) Since the density is 1 , the mass of the region is the area. This can be done using a single integral,

$$
m=\int_{0}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

(b) We have

$$
\begin{aligned}
\bar{x} & =\frac{1}{m} \int_{0}^{1} \int_{0}^{x^{2}} x d y d x \\
& =3 \int_{0}^{1} x \cdot x^{2} d x \\
& =\left.3 \cdot \frac{x^{4}}{4}\right|_{0} ^{1} \\
& =\frac{3}{4}
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
\bar{y} & =\frac{1}{m} \int_{0}^{1} \int_{0}^{x^{2}} y d y d x \\
& =\left.3 \int_{0}^{1} \frac{y^{2}}{2}\right|_{0} ^{x^{2}} d x \\
& =3 \int_{0}^{1} \frac{x^{4}}{2} d x \\
& =\left.3 \cdot \frac{x^{5}}{5 \cdot 2}\right|_{0} ^{1} \\
& =\frac{3}{10}
\end{aligned}
$$

6. (12 points)

Calculate the following triple integral:

$$
I=\iiint_{E} \frac{d x d y d z}{(1+x+y+z)^{3}}
$$

where E is the domain bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.

Answer:

The domain can be described as follows

$$
E=\{(x, y, z) \in \mathbb{R}: 0 \leq x \leq 1,0 \leq y \leq 1-x, 0 \leq z \leq 1-x-y\}
$$

The integral becomes:

$$
\begin{aligned}
I & =\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{1}{(1+x+y+z)^{3}} d z d y d x=\int_{0}^{1} \int_{0}^{1-x}-\left.\frac{1}{2} \frac{1}{(1+x+y+z)^{2}}\right|_{z=0} ^{z=1-x-y} d y d x \\
& =\int_{0}^{1} \int_{0}^{1-x}\left[-\frac{1}{8}+\frac{1}{2} \cdot \frac{1}{(1+x+y)^{2}}\right] d y d x=\left.\int_{0}^{1}\left[-\frac{y}{8}-\frac{1}{2} \cdot \frac{1}{(1+x+y)}\right]\right|_{y=0} ^{y=1-x} d x \\
& =\int_{0}^{1}\left[-\frac{3}{8}+\frac{x}{8}+\frac{1}{2} \frac{1}{1+x}\right] d x=\left.\left[-\frac{3 x}{8}+\frac{x^{2}}{16}+\frac{1}{2} \ln (1+x)\right]\right|_{0} ^{1}=\frac{1}{2}\left(\ln 2-\frac{5}{8}\right)
\end{aligned}
$$

7. (12 points)

In this question we will set up an integral in cylindrical coordinates. DO NOT EVALUATE THE INTEGRAL.

The problem is to determine the volume of the region inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the plane $z=1$.
(a) First find the value of r at the points of intersection of the sphere and the plane.
(b) Find the upper and lower limits of integration for z, as a function of r.
(c) Set up the integral, but DO NOT EVALUATE IT.

Answer:

(a) Using the fact that $r^{2}=x^{2}+y^{2}$, we can write the equations of the sphere as $r^{2}+z^{2}=2$. Since $z=1$ defines the plane, we can substitute into the equation for the sphere and get $r^{2}+1=2$ or $r^{2}=1$ or $r=1$, since the radial coordinate r is never negative.
(b) The region inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the plane $z=1$ gives us a lower limit of $z=1$ and an upper limit of $z=\sqrt{2-r^{2}}$, since $r^{2}=x^{2}+y^{2}$.
(c) Using cylindrical coordinates z, r, θ, we would use the differential $r d z d r d \theta$. Using the limits of integration from parts (a) and (b), we get

$$
\text { Volume }=\int_{0}^{2 \pi} \int_{0}^{1} \int_{1}^{\sqrt{2-r^{2}}} r d z d r d \theta
$$

8. (13 points) Using spherical coordinates, calculate the integral

$$
I=\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d y
$$

where $E=\left\{(x, y, z) \in \mathbb{R}: z \geq 0, x^{2}+y^{2}+z^{2} \leq z\right\}$. Follow these steps:
(a) Knowing that $0<\rho<g(\phi)$ and $0 \leq \phi \leq h(\pi)$, determine the expressions $g(\phi)$ and $h(\pi)$. Are there any restrictions for θ ?
(b) Calculate I and show that $I<\frac{1}{3}$.

Answer:

(a) Let $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$ and $z=\rho \cos \phi$. We need to find the bounds for ρ, θ, ϕ.

From the description of the domain, we see that at the boundary: $x^{2}+y^{2}+z^{2}=z$, which becomes $\rho^{2}=\rho \cos \phi$, so $0 \leq \rho \leq \cos \phi$.

Another condition is give by $z \geq x^{2}+y^{2}+z^{2} \geq 0$, which means the domain lies above the ($x y$)-plane, so ϕ is bounded by: $0<\phi \leq \frac{\pi}{2}$. For θ there isn't any restriction, so $0 \leq \theta \leq 2 \pi$.
(b) The integral becomes:

$$
\begin{aligned}
I & =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos \phi} \rho \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{\rho^{4}}{4}\right]\right|_{0} ^{\cos \phi} \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \frac{\cos ^{4} \phi}{4} \sin \phi d \phi d \theta=\left[\int_{0}^{2 \pi} d \theta\right]\left[\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{4} \phi}{4} \sin \phi d \phi\right]=2 \pi \cdot \frac{1}{4} \cdot\left(-\left.\frac{\cos ^{5} \phi}{5}\right|_{0} ^{\frac{\pi}{2}}\right) \\
& =\frac{\pi}{10}<\frac{1}{3}
\end{aligned}
$$

