MATH 164

Midterm 2 ANSWERS November 21, 2011

1. (12 points) Consider the function $f(x,y) = x^2 - y^3 + 3y + 1$ for $(x,y) \in \mathbb{R}^2$.

- (a) Find the critical points of f.
- (b) Find the local maxima, minima, and saddle points of f.
- (c) Are any of these points global maxima or minima?

Answer:

(a) We set the gradient of f equal to 0.

$$0 = \nabla f(x, y) = (2x, -3y^2 + 3) = (2x, -3(y - 1)(y + 1)).$$

The critical points of f are the solutions of this equation, namely (0, 1) and (0, -1).

(b) We use the second derivative test. First we compute

$$D = \det \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \det \begin{pmatrix} 2 & 0 \\ 0 & -6y \end{pmatrix} = -12y$$

Thus at (0, 1) we have D < 0, so this is a saddle point. At (0, -1), D > 0 and $f_{xx} > 0$, so we have a local minimum.

(c) Since $f(x, y) \to +\infty$ along the line $y = 0, x \to +\infty$, and $f(x, y) \to -\infty$ along the line $x = 0, y \to +\infty$, it follows that none of these points are global maxima or minima.

2. (13 points) Find the extreme values of $f(x, y) = x^2 + xy + y^2 + x - y + 1$ subject to the constraint $g(x, y) = x^2 + y^2 = 1$. Go through the following steps:

- (a) Use the Lagrange multiplier method to get two equations involving x, y and λ (the Lagrange multiplier).
- (b) Starting from these two equations, show that $\lambda = \frac{3}{2}$ or $y = \frac{1}{1-2\lambda}$ and provide an argument to show $\lambda \neq \frac{1}{2}$.

(c) Find the four extreme points and evaluate f at these points to see which ones are maximum points and which ones are minimum points.

Answer:

(a) We need to use Lagrange multipliers. We will solve the system given by the equations:

$$\nabla f(x, y) = \lambda \nabla g(x, y)$$
$$g(x, y) = x^2 + y^2 = 1$$

From the first relation we get that

$$2x + y + 1 = 2x\lambda$$
$$2y + x - 1 = 2y\lambda$$

From the second equation, we get that $x = 1 + 2(\lambda - 1)y$; we plug in this expression for x into the first equation and we get

$$2(1+2(\lambda-1)y)(1-y) + y + 1 = 0$$

This is equivalent to

$$(2\lambda - 3)(y(-2\lambda + 1) - 1) = 0$$

- (b) There are two possibilities: $\lambda = \frac{3}{2}$ or $y = \frac{1}{1-2\lambda}$, provided that $\lambda \neq \frac{1}{2}$ (note that λ couldn't be equal to $\frac{1}{2}$, since the equations would become x + y = 1 and x + y = -1, which is impossible).
- (c) If $\lambda = \frac{3}{2}$ then x y = 1 and plugging into the constraint, one obtains:

$$x^2 + (x-1)^2 = 1$$

or

$$2x(x-1) = 0$$

which has two solutions x = 0 and x = 1. Hence we get two points (0, -1) and (1, 0). Notice that f(0, -1) = f(1, 0) = 3.

If $y = \frac{1}{1-2\lambda}$, then $x = -\frac{1}{1-2\lambda} = -y$, so plugging into the constraint one obtains $2x^2 = 1$, so $x = \pm \frac{1}{\sqrt{2}}$. Hence we get two more points $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Notice that $f\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = \frac{3+2\sqrt{2}}{2}$ and $f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{3-2\sqrt{2}}{2}$.

We can conclude that (0, -1) and (1, 0) are maximum points $(f_{\max} = 3)$, while $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is the minimum point $(f_{\min} = \frac{3-2\sqrt{2}}{2})$.

3. (12 points) Consider the following integral:

$$I = \int_1^3 \int_1^2 xy e^{xy^2} dx dy$$

Is it easier to solve this integral as written, or by changing the order of integration? Choose the easiest way and evaluate the integral.

Answer:

Integrating first over x would involve using integration by parts, while integrating first over y would only involve a u-substitution. So we make the following substitution and change the order (with x held constant for the first integral)

$$u = xy^2$$
 $du = 2xydy$ $\frac{du}{2} = xydy$

Then

$$I = \int_{1}^{2} \int_{1}^{3} xy e^{xy^{2}} dy dx$$

$$= \frac{1}{2} \int_{1}^{2} \int_{x}^{9x} e^{u} du dx$$

$$= \frac{1}{2} \int_{1}^{2} e^{u} \Big|_{x}^{9x} dx$$

$$= \frac{1}{2} \int_{1}^{2} (e^{9x} - e^{x}) dx$$

$$= \frac{1}{2} \left(\frac{1}{9} e^{9x} - e^{x}\right) \Big|_{1}^{2}$$

$$= \frac{e^{18}}{18} - \frac{e^{9}}{18} + \frac{e^{2}}{2} - \frac{e}{2}$$

4. (13 points) Using polar coordinates, calculate the integral

$$\iint_D (x^2 + y^2) \, dx \, dy$$

where the domain D is inside the half-circle $x^2 + y^2 = 1$, $x \ge 0$, between the lines $y = \sqrt{3}x$, $x = \sqrt{3}y$. Go through the following steps:

- (a) Determine the bounds for r and θ (it might be helpful to draw a sketch of the domain).
- (b) Solve the new double integral.

Answer:

- (a) Let $x = r \cos \theta$ and $y = r \sin \theta$. Since the domain is inside the circle, we know that $0 \le r \le 1$. The first line has slope $\tan\left(\frac{\pi}{3}\right)$, while the second has slope $\tan\left(\frac{\pi}{6}\right)$, which leads us to the bounds of θ : $\frac{\pi}{6} \le \theta \le \frac{\pi}{3}$.
- (b) The integral becomes:

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{0}^{1} r^{2}r \, dr \, d\theta = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \int_{0}^{1} r^{3} \, dr \, d\theta = \left(\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d\theta\right) \cdot \left(\int_{0}^{1} r^{3} \, dr\right) = \frac{\pi}{6} \cdot \frac{1}{4} = \frac{\pi}{24}$$

5. (13 points)

Find the center of mass of the region between the curve $y = x^2$, the x-axis, and the line y = 1.

- (a) Assuming the density of region is 1, what is the mass of the region?
- (b) Find the center of mass \bar{x} in the x direction.
- (c) Find the center of mass \bar{y} in the y direction.

Answer:

Due to the typo noticed during the exam, three different solutions have been accepted. We present all three:

Solution 1

 $0 \le x \le 1$ and $x^2 \le y \le 1$

(a) Since the density is 1, the mass of the region is the area. This can be done using a single integral,

$$m = \int_0^1 (1 - x^2) dx = 1 - \frac{x^3}{3} \Big|_0^1 = \frac{2}{3}$$

(b) We have

$$\bar{x} = \frac{1}{m} \int_0^1 \int_{x^2}^1 x \, dy \, dx$$

= $\frac{3}{2} \int_0^1 x \cdot (1 - x^2) \, dx$
= $\frac{3}{2} \cdot \left(\frac{x^2}{2} - \frac{x^4}{4}\right) \Big|_0^1$
= $\frac{3}{8}$

(c) We have

$$\bar{y} = \frac{1}{m} \int_{0}^{1} \int_{x^{2}}^{1} y dy dx$$

$$= \frac{3}{2} \int_{0}^{1} \frac{y^{2}}{2} \Big|_{x^{2}}^{1} dx$$

$$= \frac{3}{4} \int_{0}^{1} (1 - x^{4}) dx$$

$$= \frac{3}{4} \cdot \left(x - \frac{x^{5}}{5}\right) \Big|_{0}^{1}$$

$$= \frac{3}{5}$$

Solution 2

 $-1 \le x \le 1$ and $x^2 \le y \le 1$

(a) Since the density is 1, the mass of the region is the area. This can be done using a single integral,

$$m = \int_{-1}^{1} (1 - x^2) dx = 1 - \frac{x^3}{3} \Big|_{-1}^{1} = \frac{4}{3}$$

(b) We have

$$\bar{x} = \frac{1}{m} \int_{-1}^{1} \int_{x^2}^{1} x \, dy \, dx$$
$$= \frac{3}{4} \int_{-1}^{1} x \cdot (1 - x^2) \, dx$$
$$= \frac{3}{4} \cdot \left(\frac{x^2}{2} - \frac{x^4}{4}\right) \Big|_{-1}^{1}$$
$$= 0$$

(c) We have

$$\bar{y} = \frac{1}{m} \int_{-1}^{1} \int_{x^{2}}^{1} y dy dx$$

$$= \frac{3}{4} \int_{-1}^{1} \frac{y^{2}}{2} \Big|_{x^{2}}^{1} dx$$

$$= \frac{3}{8} \int_{-1}^{1} (1 - x^{4}) dx$$

$$= \frac{3}{8} \cdot \left(x - \frac{x^{5}}{5} \right) \Big|_{-1}^{1}$$

$$= \frac{3}{8}$$

Solution 3

 $0 \le x \le 1$ and $0 \le y \le x^2$

(a) Since the density is 1, the mass of the region is the area. This can be done using a single integral,

$$m = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$$

(b) We have

$$\bar{x} = \frac{1}{m} \int_0^1 \int_0^{x^2} x \, dy \, dx$$
$$= 3 \int_0^1 x \cdot x^2 \, dx$$
$$= 3 \cdot \frac{x^4}{4} \Big|_0^1$$
$$= \frac{3}{4}$$

(c) We have

$$\bar{y} = \frac{1}{m} \int_0^1 \int_0^{x^2} y dy dx$$

= $3 \int_0^1 \frac{y^2}{2} \Big|_0^{x^2} dx$
= $3 \int_0^1 \frac{x^4}{2} dx$
= $3 \cdot \frac{x^5}{5 \cdot 2} \Big|_0^1$
= $\frac{3}{10}$

6. (12 points)

Calculate the following triple integral:

$$I = \iiint_E \frac{dx \, dy \, dz}{(1+x+y+z)^3}$$

where E is the domain bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.

Answer:

The domain can be described as follows

$$E = \{ (x, y, z) \in \mathbb{R} : 0 \le x \le 1, 0 \le y \le 1 - x, 0 \le z \le 1 - x - y \}.$$

The integral becomes:

$$\begin{split} I &= \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{1}{(1+x+y+z)^{3}} \, dz \, dy \, dx = \int_{0}^{1} \int_{0}^{1-x} -\frac{1}{2} \frac{1}{(1+x+y+z)^{2}} \Big|_{z=0}^{z=1-x-y} \, dy \, dx \\ &= \int_{0}^{1} \int_{0}^{1-x} \left[-\frac{1}{8} + \frac{1}{2} \cdot \frac{1}{(1+x+y)^{2}} \right] \, dy \, dx = \int_{0}^{1} \left[-\frac{y}{8} - \frac{1}{2} \cdot \frac{1}{(1+x+y)} \right] \Big|_{y=0}^{y=1-x} \, dx \\ &= \int_{0}^{1} \left[-\frac{3}{8} + \frac{x}{8} + \frac{1}{2} \frac{1}{1+x} \right] \, dx = \left[-\frac{3x}{8} + \frac{x^{2}}{16} + \frac{1}{2} \ln(1+x) \right] \Big|_{0}^{1} = \frac{1}{2} \left(\ln 2 - \frac{5}{8} \right) \end{split}$$

7. (12 points)

In this question we will set up an integral in cylindrical coordinates. **DO NOT EVALU-ATE THE INTEGRAL**.

The problem is to determine the volume of the region inside the sphere $x^2 + y^2 + z^2 = 2$ and above the plane z = 1.

- (a) First find the value of r at the points of intersection of the sphere and the plane.
- (b) Find the upper and lower limits of integration for z, as a function of r.

(c) Set up the integral, but **DO NOT EVALUATE IT**.

Answer:

(a) Using the fact that $r^2 = x^2 + y^2$, we can write the equations of the sphere as $r^2 + z^2 = 2$. Since z = 1 defines the plane, we can substitute into the equation for the sphere and get $r^2 + 1 = 2$ or $r^2 = 1$ or r = 1, since the radial coordinate r is never negative.

(b) The region inside the sphere $x^2 + y^2 + z^2 = 2$ and above the plane z = 1 gives us a lower limit of z = 1 and an upper limit of $z = \sqrt{2 - r^2}$, since $r^2 = x^2 + y^2$.

(c) Using cylindrical coordinates z, r, θ , we would use the differential $rdzdrd\theta$. Using the limits of integration from parts (a) and (b), we get

$$Volume = \int_0^{2\pi} \int_0^1 \int_1^{\sqrt{2-r^2}} r dz dr d\theta$$

8. (13 points) Using spherical coordinates, calculate the integral

$$I = \iiint_E \sqrt{x^2 + y^2 + z^2} \, dx \, dy \, dy$$

where $E = \{(x, y, z) \in \mathbb{R} : z \ge 0, x^2 + y^2 + z^2 \le z\}$. Follow these steps:

- (a) Knowing that $0 < \rho < g(\phi)$ and $0 \le \phi \le h(\pi)$, determine the expressions $g(\phi)$ and $h(\pi)$. Are there any restrictions for θ ?
- (b) Calculate I and show that $I < \frac{1}{3}$.

Answer:

(a) Let $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$ and $z = \rho \cos \phi$. We need to find the bounds for ρ, θ, ϕ .

From the description of the domain, we see that at the boundary: $x^2 + y^2 + z^2 = z$, which becomes $\rho^2 = \rho \cos \phi$, so $0 \le \rho \le \cos \phi$.

Another condition is give by $z \ge x^2 + y^2 + z^2 \ge 0$, which means the domain lies above the (xy)-plane, so ϕ is bounded by: $0 < \phi \le \frac{\pi}{2}$. For θ there isn't any restriction, so $0 \le \theta \le 2\pi$.

(b) The integral becomes:

$$\begin{split} I &= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\cos\phi} \rho \cdot \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta = \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \left[\frac{\rho^{4}}{4} \right] \Big|_{0}^{\cos\phi} \sin\phi \, d\phi \, d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \frac{\cos^{4}\phi}{4} \sin\phi \, d\phi \, d\theta = \left[\int_{0}^{2\pi} d\theta \right] \left[\int_{0}^{\frac{\pi}{2}} \frac{\cos^{4}\phi}{4} \sin\phi \, d\phi \right] = 2\pi \cdot \frac{1}{4} \cdot \left(-\frac{\cos^{5}\phi}{5} \Big|_{0}^{\frac{\pi}{2}} \right) \\ &= \frac{\pi}{10} < \frac{1}{3}. \end{split}$$