MATH 164

Midterm 1 ANSWERS

October 18, 2011

1. (12 points)

(a) Find the angle between vectors $\mathbf{a}=(1,2,3)$ and $\mathbf{b}=(-1,2,-2)$ in terms of an inverse trig function. Simplify as much as you can without using a calculator.
(b) Find a vector which is perpendicular to the two vectors above.
(c) Find a unit vector which is parallel to $(-1,2,-2)$.

Answer:

(a) If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}| \cdot|\mathbf{b}| \cos \theta$. Since $\mathbf{a} \cdot \mathbf{b}=$ $-1+4-6=-3,|\mathbf{a}|=\sqrt{1+4+9}=\sqrt{14},|\mathbf{b}|=\sqrt{1+4+4}=3$, we have

$$
\theta=\arccos \left(\frac{-3}{\sqrt{14} \cdot 3}\right)=\arccos \left(\frac{-1}{\sqrt{14}}\right)
$$

(b) We can take the cross product $\mathbf{a} \times \mathbf{b}$, which is perpendicular to both \mathbf{a} and \mathbf{b}. Expressing the vectors in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$, we get

$$
\begin{aligned}
(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}) \times(-\mathbf{i}+2 \mathbf{j}-2 \mathbf{k}) & =2 \mathbf{k}+2 \mathbf{j}+2 \mathbf{k}-4 \mathbf{i}-3 \mathbf{j}-6 \mathbf{i} \\
& =-10 \mathbf{i}-\mathbf{j}+4 \mathbf{k}
\end{aligned}
$$

(c) Since $|(-1,2,-2)|=3$ by part (a), we need only divide the vector by 3 . This gives

$$
\left(-\frac{1}{3}, \frac{2}{3},-\frac{2}{3}\right)
$$

The negative of this vector will also work.

2. (13 points)

Let $\mathbf{r}(t)$ denote the curve with parametric equation

$$
x(t)=t^{2}, \quad y(t)=2 \sin (t)-1, \quad z(t)=2 \cos (t)
$$

(a) Compute the velocity vector, the speed and the acceleration vector.
(b) The curve $\mathbf{r}(t)$ lies on a cylinder. Find the equation of that cylinder.

Answer:

(a)

$$
\begin{aligned}
& \mathbf{v}(t)=(2 t, 2 \cos (t),-2 \sin (t)) \\
& v(t)=\|\mathbf{v}(t)\|=2 \sqrt{t^{2}+1} \\
& \mathbf{a}(t)=(2,-2 \sin (t),-2 \cos (t))
\end{aligned}
$$

(b) One can notice that $(y(t)+1)^{2}+z(t)^{2}=4$, so the equation of the cylinder is given by

$$
(y+1)^{2}+z^{2}=4 \quad x \in \mathbb{R}
$$

This is a cylinder of radius 2 , whose center line is parallel to the x-axis and intersecting the (y, z)-plane through the point $(0,-1,0)$.

3. (13 points)

(a) Find an integral which gives the arc length of the curve between $t=0$ and $t=1$. Do not solve the integral.

$$
r(t)=\left(t^{2}+1, e^{t^{2}}, \sqrt{t}\right)
$$

(b) Find the curvature $\kappa(t)$ of the curve

$$
r(t)=\left(t^{2}+1, t^{3}, t\right)
$$

Answer:

(a) The formula is $L=\int_{a}^{b}\left|r^{\prime}(t)\right| d t$. Therefore in our case,

$$
\begin{aligned}
L & =\int_{0}^{1}\left[(2 t)^{2}+\left(e^{t^{2}} 2 t\right)^{2}+\left(\frac{1}{2 \sqrt{t}}\right)^{2}\right]^{1 / 2} d t \\
& =\int_{0}^{1}\left[4 t^{2}+4 t^{2} e^{2 t^{2}}+\frac{1}{4 t}\right]^{1 / 2} d t
\end{aligned}
$$

(b) We use the formula

$$
\kappa(t)=\frac{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|r^{\prime}(t)\right|^{3}}
$$

Using $\mathbf{i}, \mathbf{j}, \mathbf{k}$ notation, we have

$$
\begin{aligned}
r^{\prime}(t) & =2 t \mathbf{i}+3 t^{2} \mathbf{j}+\mathbf{k} \\
r^{\prime \prime}(t) & =2 \mathbf{i}+6 t \mathbf{j}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|r^{\prime}(t)\right| & =\left[(2 t)^{2}+\left(3 t^{2}\right)^{2}+1\right]^{1 / 2}=\left[9 t^{4}+4 t^{2}+1\right]^{1 / 2} \\
r^{\prime}(t) \times r^{\prime \prime}(t) & =12 t^{2} \mathbf{k}-6 t^{2} \mathbf{k}+2 \mathbf{j}-6 t \mathbf{i}=-6 t \mathbf{i}+2 \mathbf{j}+6 t^{2} \mathbf{k} \\
\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right| & =\left[(-6 t)^{2}+2^{2}+\left(6 t^{2}\right)^{2}\right]^{1 / 2}=\left[36 t^{4}+36 t^{2}+4\right]^{1 / 2}=2\left[9 t^{4}+9 t^{2}+1\right]^{1 / 2}
\end{aligned}
$$

Finally,

$$
\kappa(t)=\frac{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|r^{\prime}(t)\right|^{3}}=\frac{2\left[9 t^{4}+9 t^{2}+1\right]^{1 / 2}}{\left[9 t^{4}+4 t^{2}+1\right]^{3 / 2}}
$$

4. (13 points)

Consider the function

$$
f(x, y)=x^{2}-6 x+y^{2}-2 y+10
$$

(a) What type of quadric surface is the graph $z=f(x, y)$?
(b) Find an equation of the tangent plane to the graph when $x=5$ and $y=-1$
(c) Consider the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined as $h(x, y)=\sqrt{4-\|\nabla f(x, y)\|^{2}}$. What is the domain of h ?

Answer:

(a) Since $z=(x-3)^{2}+(y-1)^{2}$ the graph has to be a circular paraboloid, with the axis in the z direction. Its tip lies in the (x, y)-plane, at the point $(3,1,0)$.
(b) The equation of the tangent plan is given by

$$
z=f(5,-1)+f_{x}(5 .-1)(x-5)+f_{y}(5,-1)(y+1)
$$

The partial derivatives are $f_{x}(x, y)=2 x-6$ and $f_{y}(x, y)=2 y-2$, hence the equation of the tangent plane becomes:

$$
z=8+4(x-5)+(-4)(y+1) \quad \text { or } \quad 4 x-4 y-z=16
$$

(c)

$$
\nabla f(x, y)=\left(f_{x}, f_{y}\right)=(2 x-6,2 y-2) \Longrightarrow h(x, y)=2 \sqrt{1-(x-3)^{2}-(y-1)^{2}}
$$

h can only be defined on a domain where the square root exists, so one must have that

$$
1-(x-3)^{2}-(y-1)^{2} \geq 0
$$

This gives

$$
(x-3)^{2}+(y-1)^{2} \leq 1
$$

so the domain is the closed disk, centered at $(3,1)$, i.e.

$$
\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid(x-3)^{2}+(y-1)^{2} \leq 1\right\} .
$$

5. (13 points)

One of the following functions has a limit as $(x, y) \rightarrow(0,0)$. Find the limit if it exists, or state that it doesn't exist. In either case, you must explain your reasoning to get full credit.
(a)

$$
f(x, y)=\frac{x^{2} y}{x^{4}+y^{6}}
$$

(b)

$$
f(x, y)=\frac{x^{4}+y^{5}}{x^{2}+y^{4}}
$$

Answer:

(a) The limit does not exist. If we let $x=y$ then

$$
\frac{x^{2} y}{x^{4}+y^{6}}=\frac{y^{3}}{y^{4}+y^{6}}=\frac{1}{y+y^{3}}
$$

and the denominator tends to 0 while the numerator is fixed.
(b) The limit exists, and equals 0 . We can break up the fraction as follows,

$$
\frac{x^{4}+y^{5}}{x^{2}+y^{3}}=\frac{x^{4}}{x^{2}+y^{4}}+\frac{y^{5}}{x^{2}+y^{4}}
$$

We have

$$
\left|\frac{x^{4}}{x^{2}+y^{4}}\right| \leq\left|\frac{x^{4}}{x^{2}}\right|=\left|x^{2}\right|
$$

which tends to 0 as $x \rightarrow 0$. For the second term, we have

$$
\left|\frac{y^{5}}{x^{2}+y^{4}}\right| \leq\left|\frac{y^{5}}{y^{4}}\right|=|y|
$$

which tends to 0 as $y \rightarrow 0$.
6. (12 points)
(a) Find $\mathbf{r}(t)$ if $\mathbf{r}^{\prime}(t)=t \mathbf{i}+e^{t} \mathbf{j}+t e^{t} \mathbf{k}$ and $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$.
(b) If $\mathbf{r}(t)=\left(e^{2 t}, e^{-2 t}, t e^{2 t}\right)$ find $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$.

Answer:

(a)

$$
\begin{aligned}
\mathbf{r}(t) & =\int \mathbf{r}^{\prime}(t) d t=\int\left(t \mathbf{i}+e^{t} \mathbf{j}+t e^{t} \mathbf{k}\right) d s \\
& =\frac{t^{2}}{2} \mathbf{i}+e^{t} \mathbf{j}+\left(t e^{t}-e^{t}\right) \mathbf{k}+\mathbf{C}
\end{aligned}
$$

But $\mathbf{r}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k}$, which means that $\mathbf{C}=\mathbf{i}+2 \mathbf{k}$. So the curve is:

$$
\mathbf{r}(t)=\left(\frac{t^{2}}{2}+1\right) \mathbf{i}+e^{t} \mathbf{j}+\left(t e^{t}-e^{t}+2\right) \mathbf{k}
$$

(b)

$$
\begin{aligned}
\mathbf{r}(t) & =\left(e^{2 t}, e^{-2 t}, t e^{2 t}\right) \\
\mathbf{r}^{\prime}(t) & =\left(2 e^{2 t},-2 e^{-2 t}, e^{2 t}+2 t e^{2 t}\right) \\
\mathbf{r}^{\prime \prime}(t) & =\left(4 e^{2 t}, 4 e^{-2 t}, 4 e^{2 t}+4 t e^{2 t}\right) \\
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t) & =8 e^{4 t}-8 e^{-4 t}+4 e^{4 t}+12 t e^{4 t}+8 t^{2} e^{4 t} \\
& =12 e^{4 t}-8 e^{-4 t}+12 t e^{4 t}+8 t^{2} e^{4 t}
\end{aligned}
$$

7. (12 points)

Suppose that $\frac{\partial f}{\partial x}(1,2)=3$ and $\frac{\partial f}{\partial y}(1,2)=-4$. If $r(t)=\left(2 t^{2}-t,-6 t+2\right)$, find $\frac{d f(r(t))}{d t}$ at $t=1$.

Answer:

The chain rule for functions of several variables states that

$$
\frac{d f(r(t))}{d t}=\nabla f(r(t)) \cdot r^{\prime}(t)
$$

Note that $r^{\prime}(t)=(4 t-1,-6)$ and $r^{\prime}(1)=(3,-6)$. Also $r(1)=(1,2)$. So we have

$$
\nabla f(r(1))=\left(\frac{\partial f}{\partial x}(1,2), \frac{\partial f}{\partial y}(1,2)\right)=(3,-4)
$$

Thus, substituting into the chain rule, we find

$$
\frac{d f(r(t))}{d t}=(3,-4) \cdot(3,-6)=9+24=33
$$

8. (12 points) The linear approximation at $(x, y)=(0,0)$ of $\sqrt{y+\cos ^{2} x}$ takes the form $a+b x+c y$. Find a, b, c and write the resulting linear approximation.

Answer:

The linear approximation for $f(x, y)=\sqrt{y+\cos ^{2} x}$ is given by

$$
L(x, y)=f(0,0)+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)
$$

But $f_{x}(x, y)=-\sin x \cos x\left(y+\cos ^{2} x\right)^{-1 / 2}$ and $f_{y}(x, y)=\frac{1}{2}\left(y+\cos ^{2} x\right)^{-1 / 2}$. So $f(0,0)=1$, $f_{x}(0,0)=0$, and $f_{y}(0,0)=\frac{1}{2}$.

Thus $L(x, y)=1+\frac{1}{2} y$.

