Math 164: Multi-Dimensional Calculus

Midterm 1

October 21, 2008

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the box:

Nicholas Rogers	MWF 10:00 - 10:50 AM	
Sema Salur	MWF 9:00-9:50 AM	

- The presence of calculators, cell phones, iPods and other electronic devices at this exam is strictly forbidden.
- Show your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- Clearly circle or label your simplified final answers.
- You are responsible for checking that this exam has all 10 pages.

QUESTION	VALUE	SCORE
1	12	
2	12	
3	12	
4	10	
5	12	
6	16	
7	8	
8	10	
9	8	
TOTAL	100	

Formulas

$$
\begin{gathered}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \quad \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
\vec{u} \cdot \vec{v}=|\vec{u}||\vec{v}| \cos \theta \quad|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin \theta \\
\operatorname{comp}_{\vec{u}} \vec{v}=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|} \quad \operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^{2}} \vec{u} \\
\vec{r}=\overrightarrow{r_{0}}+t \vec{v} \quad \vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)=0 \\
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|} \\
L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t \\
\vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left|\vec{T}^{\prime}(t)\right|} \quad \overrightarrow{B_{2}}(t)=\vec{T}(t) \times \vec{N}(t) \\
\kappa(t)=\frac{\left|\vec{T}^{\prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|}=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}} \\
L(x, y)=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right)
\end{gathered}
$$

1. (12 points) Let $\vec{v}=4 \vec{i}-\vec{j}+\vec{k}$ and $\vec{w}=2 \vec{i}+3 \vec{j}-\vec{k}$. Find:
(a) $\vec{v} \cdot \vec{w}$

$$
\vec{v} \cdot \vec{w}=4 \cdot 2-1 \cdot 3+1(-1)=4 .
$$

(b) $\cos \theta$, where θ is the angle between \vec{v} and \vec{w}.

Since $\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos \theta$,

$$
\cos \theta=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{4}{\sqrt{4^{2}+(-1)^{2}+1^{2}} \sqrt{2^{2}+3^{2}+(-1)^{2}}}=\frac{4}{\sqrt{18} \sqrt{14}}=\frac{2}{3 \sqrt{7}}
$$

(c) a scalar s such that \vec{v} is orthogonal to $\vec{v}-s \vec{w}$.

We'd like $\vec{v} \cdot(\vec{v}-s \vec{w})=0$.

$$
\begin{aligned}
\vec{v} \cdot(\vec{v}-s \vec{w}) & =\vec{v} \cdot \vec{v}-s(\vec{v} \cdot \vec{w}) \\
& =|\vec{v}|^{2}-4 s=18-4 s
\end{aligned}
$$

Thus $4 s=18$, or $s=\frac{9}{2}$.
2. (12 points) Find an equation for the plane that passes through the origin and is parallel to the vectors $\vec{v}=\vec{i}-2 \vec{j}-3 \vec{k}$ and $\vec{w}=-\vec{i}+\vec{j}+2 \vec{k}$.

The normal vector for this plane must be perpendicular to both of the given vectors, so we use the cross product.

$$
\begin{aligned}
\vec{v} \times \vec{w} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
1 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right| \\
& =\vec{i}\left|\begin{array}{cc}
-2 & -3 \\
1 & 2
\end{array}\right|-\vec{j}\left|\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
1 & -2 \\
-1 & 1
\end{array}\right| \\
& =-\vec{i}+\vec{j}-\vec{k} .
\end{aligned}
$$

Then the equation for the plane is given by $\vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)=0$. Since $\overrightarrow{r_{0}}=\langle 0,0,0\rangle$ is the origin, $\vec{n} \cdot \overrightarrow{r_{0}}=0$ and we obtain

$$
-x+y-z=0
$$

3. (12 points) A triangle in \mathbb{R}^{3} has vertices $A(3,4,-1), B(0,0,3)$ and $C(1,0,-4)$.
(a) Find the perimeter of the triangle.

We use the distance formula three times:

$$
\begin{aligned}
& A B=\sqrt{(0-3)^{2}+(0-4)^{2}+(3-(-1))^{2}}=\sqrt{(-3)^{2}+(-4)^{2}+4^{2}}=\sqrt{41} ; \\
& A C=\sqrt{(1-3)^{2}+(0-4)^{2}+(-4-(-1))^{2}}=\sqrt{(-2)^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{29} ; \\
& B C=\sqrt{(1-0)^{2}+(0-0)^{2}+(-4-3)^{2}}=\sqrt{1^{2}+0^{2}+7^{2}}=\sqrt{50}=5 \sqrt{2} .
\end{aligned}
$$

Thus the total perimeter is $\sqrt{\sqrt{41}+\sqrt{29}+5 \sqrt{2}}$.
(b) Find the area of the triangle.

Recall that the magnitude of the cross product $\overrightarrow{A B} \times \overrightarrow{A C}$ is the area of the parallelogram spanned by $\overrightarrow{A B}$ and $\overrightarrow{A C}$. The area of the triangle is half the area of this parallelogram. Now $\overrightarrow{A B}=-3 \vec{i}-4 \vec{j}+4 \vec{k}$ and $\overrightarrow{A C}=-2 \vec{i}-4 \vec{j}-3 \vec{k}$, so

$$
\begin{aligned}
\overrightarrow{A B} \times \overrightarrow{A C} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-3 & -4 & 4 \\
-2 & -4 & -3
\end{array}\right| \\
& =\vec{i}\left|\begin{array}{cc}
-4 & 4 \\
-4 & -3
\end{array}\right|-\vec{j}\left|\begin{array}{cc}
-3 & 4 \\
-2 & -3
\end{array}\right|+\vec{k}\left|\begin{array}{cc}
-3 & -4 \\
-2 & -4
\end{array}\right| \\
& =28 \vec{i}-17 \vec{j}+4 \vec{k} .
\end{aligned}
$$

So the area of the triangle is

$$
A=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{\sqrt{28^{2}+(-17)^{2}+4^{2}}}{2}=\frac{\sqrt{784+289+16}}{2}=\frac{\sqrt{1089}}{2}=\frac{33}{2}
$$

4. (10 points) Find the parametric equations for the tangent line to the graph of the vector function $\vec{F}(t)=\langle\sin t, \cos t, 3 t\rangle$ at the point P_{0} corresponding to $t_{0}=0$.

To find the tangent line, we need to know P_{0} and the tangent vector $\vec{F}^{\prime}(0)$.

$$
\begin{aligned}
P_{0} & =\vec{F}(0)=\langle\sin 0, \cos 0,3(0)\rangle=\langle 0,1,0\rangle . \\
\vec{F}^{\prime}(t) & =\langle\cos t,-\sin t, 3\rangle \\
\vec{F}^{\prime}(0) & =\langle\cos 0,-\sin 0,3\rangle=\langle 1,0,3\rangle .
\end{aligned}
$$

So the parametrization of the tangent line is given by

$$
\vec{r}(t)=P_{0}+t \vec{F}^{\prime}(0)=\langle 0,1,0\rangle+t\langle 1,0,3\rangle
$$

or equivalently,

$$
x(t)=t ; \quad y(t)=1 ; \quad z(t)=3 t .
$$

5. (12 points) Find the velocity $\vec{v}(t)$, the speed $|\vec{v}(t)|$ and the acceleration $\vec{a}(t)$ for the body with position vector $\vec{r}(t)=t \vec{i}+2 t \vec{j}+t e^{t} \vec{k}$.

$$
\begin{aligned}
\vec{v}(t) & =\vec{r}^{\prime}(t)=\vec{i}+2 \vec{j}+\left(e^{t}+t e^{t}\right) \vec{k} . \\
|\vec{v}(t)| & =\sqrt{1^{2}+2^{2}+\left(e^{t}+t e^{t}\right)^{2}}=\sqrt{5+e^{2 t}(t+1)^{2}} . \\
\vec{a}(t) & =\vec{v}^{\prime}(t)=\left(e^{t}+e^{t}+t e^{t}\right) \vec{k}=e^{t}(t+2) \vec{k} .
\end{aligned}
$$

6. (16 points) For the curve given by $\vec{r}(t)=(\sin t) \vec{i}+(\cos t) \vec{j}+t \vec{k}$, find:
(a) a unit tangent vector \vec{T} at the point on the curve where $t=\pi$.

The vector $\vec{r}^{\prime}(t)=(\cos t) \vec{i}-(\sin t) \vec{j}+\vec{k}$ is a tangent vector, so a unit tangent vector is given by

$$
\begin{gathered}
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\frac{(\cos t) \vec{i}-(\sin t) \vec{j}+\vec{k}}{\sqrt{\cos ^{2} t+\sin ^{2} t+1}}=\frac{(\cos t) \vec{i}-(\sin t) \vec{j}+\vec{k}}{\sqrt{2}} \\
\vec{T}(\pi)=\frac{(\cos \pi) \vec{i}-(\sin \pi) \vec{j}+\vec{k}}{\sqrt{2}}=-\frac{1}{\sqrt{2}} \vec{i}+\frac{1}{\sqrt{2}} \vec{k} .
\end{gathered}
$$

(b) the curvature κ when $t=\pi$.

$$
\begin{aligned}
\kappa(t)=\frac{\left|\vec{T}^{\prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|} & =\frac{\frac{1}{\sqrt{2}}|(-\sin t) \vec{i}-(\cos t) \vec{j}|}{\sqrt{2}} \\
& =\frac{\sqrt{\sin ^{2} t+\cos ^{2} t}}{2}=\frac{1}{2} .
\end{aligned}
$$

(c) the length of the curve from $t=0$ to $t=\pi$.

$$
L=\int_{a}^{b}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{\pi} \sqrt{2} d t=\pi \sqrt{2} .
$$

7. (8 points) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$ does not exist.

Along the y-axis (i.e., the line $x=0$),

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{y \rightarrow 0} \frac{0 \cdot y}{0^{2}+y^{2}}=0 .
$$

However, along the line $y=x$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{x \rightarrow 0} \frac{x \cdot x}{x^{2}+x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2} .
$$

Since the two limits are not equal, the limit does not exist.
8. (10 points) Find the equation of the tangent plane to the surface

$$
z=f(x, y)=x^{2}+y^{2}+\sin x y \quad \text { at } P_{0}=(0,2,4)
$$

The equation of the tangent plane is given by the linearization of $f(x, y)$ near $\left(x_{0}, y_{0}\right)=(0,2)$:

$$
z=L(x, y)=f(0,2)+\frac{\partial f}{\partial x}(0,2) \cdot\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(0,2) \cdot\left(y-y_{0}\right) .
$$

First observe that

$$
f(0,2)=0^{2}+2^{2}+\sin (0 \cdot 2)=4
$$

in fact, this piece of information is given to us as the z-coordinate of the point P_{0}. Now

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x+y \cos x y, \quad \text { so } \quad \frac{\partial f}{\partial x}(0,2)=2 \cdot 0+2 \cdot \cos (0 \cdot 2)=2 \\
& \frac{\partial f}{\partial y}=2 y+x \cos x y, \quad \text { so } \quad \frac{\partial f}{\partial y}(0,2)=2 \cdot 2+0 \cdot \cos (0 \cdot 2)=4
\end{aligned}
$$

Putting this all together, we obtain

$$
\begin{gathered}
z=4+2(x-0)+4(y-2)=2 x+4 y-8 \text {; or } \\
2 x+4 y-z=8 .
\end{gathered}
$$

9. (8 points) Consider the surface defined by

$$
\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+1=0 .
$$

Near the point $(1,-1,1), z$ is defined implicitly as a function of x and y.
(a) Find $\frac{\partial z}{\partial x}$.

Differentiating both sides with respect to x,

$$
\frac{1}{y}-\frac{y}{z^{2}} \frac{\partial z}{\partial x}+\frac{1}{x} \frac{\partial z}{\partial x}-\frac{z}{x^{2}}=0 .
$$

Rearranging and solving for $\frac{\partial z}{\partial x}$,

$$
\begin{gathered}
\frac{\partial z}{\partial x}\left(\frac{1}{x}-\frac{y}{z^{2}}\right)=\frac{z}{x^{2}}-\frac{1}{y} ; \\
\frac{\partial z}{\partial x}=\frac{\frac{z}{x^{2}}-\frac{1}{y}}{\frac{1}{x}-\frac{y}{z^{2}}} .
\end{gathered}
$$

At $(1,-1,1)$,

$$
\frac{\partial z}{\partial x}=\frac{1-(-1)}{1-(-1)}=\frac{2}{2}=1 .
$$

(b) Find $\frac{\partial z}{\partial y}$.

Differentiating both sides with respect to y,

$$
-\frac{x}{y^{2}}+\frac{1}{z}-\frac{y}{z^{2}} \frac{\partial z}{\partial y}+\frac{1}{x} \frac{\partial z}{\partial y}=0
$$

Rearranging and solving for $\frac{\partial z}{\partial y}$,

$$
\begin{gathered}
\frac{\partial z}{\partial y}\left(\frac{1}{x}-\frac{y}{z^{2}}\right)=\frac{x}{y^{2}}-\frac{1}{z} ; \\
\frac{\partial z}{\partial x}=\frac{\frac{x}{y^{2}}-\frac{1}{z}}{\frac{1}{x}-\frac{y}{z^{2}}}
\end{gathered}
$$

At (1, -1, 1),

$$
\frac{\partial z}{\partial x}=\frac{1-1}{1-(-1)}=\frac{0}{2}=0 .
$$

