Math 164: Multidimensional Calculus

Midterm II

November 17, 2016

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Kleene	TR 12:30-1:45pm	
Salur	MW 3:25-4:40pm	
Gafni	TR 3:25-4:40pm	
Lee	MWF 09:00-09:50am	

- You have 75 minutes to work on this exam.
- You are responsible for checking that this exam has all 10 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers.
- Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:

\qquad

QUESTION	VALUE	SCORE
1	10	
2	15	
3	10	
4	15	
5	25	
6	15	
7	10	
TOTAL	100	

1. (10 points) Consider the function

$$
f(x, y, z)=\frac{2 x^{2}}{x+z}+x^{2} y^{2} e^{z}-x y \sin (z)+\frac{e^{\sqrt{x+y}}}{\cos (x y)}
$$

Evaluate the third order partial derivative $f_{x y z}(1,1,0)$.
2. (15 points) Let $f(x, y)$ be given by

$$
f(x, y)=4-\ln (x y-9)+x^{2} \cos (\pi y)
$$

a) Explain why $f(x, y)$ is differentiable at $(5,2)$.
b) Find an equation for the linearization of f at the point $(5,2)$, and use it to estimate the value of f at the point $(5.05,1.98)$.
3. (10 points) Write an equation for the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $(1,1,1)$.
4. (15 points) Find the directional derivative of $f(x, y)=2 x^{2} y^{3}+6 x y$ at $(1,1)$ in the direction of a unit vector whose angle with the positive x-axis is $\pi / 6$. (Recall that $\cos (\pi / 6)=$ $\sqrt{3} / 2$)
5. (25 points) a) Consider the function $f(x, y)=x^{2} y-2 x y+2 y^{2}-15 y$. Find all the critical points of f and classify them as relative maxima, relative minima, or saddle points.
b) Find the extreme values of the function $f(x, y)=3 x^{2}+2 y^{2}-4 y$ subject to the constraint $x^{2}+y^{2} \leq 9$.
6. (15 points) Evaluate the integral by reversing the order of integration.

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y
$$

7. (10 points) Use polar coordinates to find the volume of the solid bounded by the paraboloids $z=3 x^{2}+3 y^{2}$ and $z=4-x^{2}-y^{2}$.

Blank page for scratch work

