Math 164: Multidimensional Calculus

Final Exam

December 17, 2016

NAME (please print legibly): \qquad
Your University ID Number: \qquad
Indicate your instructor with a check in the appropriate box:

Kleene	TR 12:30-1:45pm	
Salur	MW 3:25-4:40pm	
Gafni	TR 3:25-4:40pm	
Lee	MWF 09:00-09:50am	

- You are responsible for checking that this exam has all 15 pages.
- No calculators, phones, electronic devices, books, notes are allowed during the exam.
- Show all work and justify all answers. Please sign the pledge below.

Pledge of Honesty

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

Part A		
QUESTION	VALUE	SCORE
1	18	
2	16	
3	16	
4	16	
5	18	
6	16	
TOTAL	100	

Part B		
QUESTION	VALUE	SCORE
7	16	
8	16	
9	16	
10	18	
11	16	
12	18	
TOTAL	100	

Part A

1. (18 points)

Consider the vectors

$$
\mathbf{a}=\langle 1,-1,3\rangle, \quad \mathbf{b}=\langle-2,1,1\rangle, \quad \mathbf{c}=\langle 1,0,5\rangle .
$$

Compute the following.
(a) The angle between \mathbf{a} and \mathbf{b}.
(b) The projection of \mathbf{b} onto \mathbf{c}.
(c) The area of the parallelogram spanned by a and \mathbf{c}.
2. (16 points) For each of the following statements, circle TRUE or FALSE. No work is required, and there is no partial credit.
(a) The curve $\mathbf{r}(t)=\left\langle t^{3},-t^{3}, 2 t^{3}\right\rangle$ is a line.

TRUE FALSE
(b) If $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are differentiable vector functions, then $\frac{d}{d t}[\mathbf{u}(t) \cdot \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}^{\prime}(t)$.

TRUE FALSE
(c) If $|\mathbf{r}(t)|=1$ for all t then $\left|\mathbf{r}^{\prime}(t)\right|=0$.

TRUE FALSE
(d) The curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle, 0 \leq t \leq 1$, has arclength 4π. TRUE FALSE
3. (16 points) Find the limit, if it exists, or show that the limit does not exist.
(a)

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{e^{x} \ln y}{x^{2}+2 y^{2}}
$$

(b)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x \sin y}{x^{2}+2 y^{2}}
$$

4. (16 points) (a) Find the equation of the tangent plane to the surface $z=x^{2}+2 y^{2}$ at the point $(2,0,1)$.
(b) What is an approximate value of $f(2.1,-0.1)$ when $f(x, y)=x^{2}+2 y^{2}$?
5. (18 points) Find the extreme values of the function $f(x, y)=x y$ over the curve $x^{2}+y^{4}=3 / 4$.
6. (16 points) Evaluate the integral by reversing the order of integration.

$$
\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x
$$

Part B

7. (16 points) Find the volume of the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=4$ and outside the cylinder $x^{2}+y^{2}=1$.
8. (16 points) Evaluate the line integral $\int_{C} x y z d s$, where C is the line segment from $(1,2,3)$ to $(2,4,5)$.
9. (16 points) Let T be the triangle with vertices $(1,0),(1,1)$ and $(1,0)$, let \mathbf{F} be the vector field given by

$$
\mathbf{F}(x, y)=\left\langle x y^{2} \sin \left(x^{2}\right)+4 y x^{2},-y \cos \left(x^{2}\right)\right\rangle .
$$

Compute $\oint_{\partial T} \mathbf{F} \cdot \mathbf{d r}$.
10. (18 points) (a) Find a potential function for the vector field

$$
\mathbf{F}(x, y, z)=\left\langle y z+2 x y, x z+x^{2}, x y+4 z\right\rangle
$$

(b) Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{d r}$, where C is the oriented curve parametrized by $r(t)=\left\langle t, t^{2}, t^{4}-1\right\rangle$ for $0 \leq t \leq 1$.
11. (16 points) Evaluate the surface integral $\iint x^{2} y z d S$, where the surface S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $[0,3] \times[0,2]$.
12. (18 points) Compute the flux of the vector field

$$
\mathbf{F}(x, y, z)=y \mathbf{i}+x \mathbf{j}+z \mathbf{k} .
$$

through the surface S given by the boundary of the solid region E enclosed by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$. Here S is given the positive (outward) orientation with respect to E.

No test material on this page.

Blank page for scratch work.

